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Abstract  
 

Land Change Science has increasingly relied on spatial analysis methods to monitor, understand, and predict land-use and 

land-cover change (LULCC). Over the past decade, technological advancements such as high-resolution satellite imagery, machine 

learning algorithms, and robust GIS platforms have significantly transformed how spatial patterns and environmental transformations 

are studied. However, there is a lack of a synthesized understanding of how these geospatial methodologies have evolved and been 

applied across different contexts and regions. This review aims to systematically examine the evolution and application of spatial 

analysis techniques in land change science, focusing on the tools, models, and analytical approaches used in geospatial studies over the 

past decade. A systematic literature review (SLR) was conducted using a dataset of 62 peer-reviewed research articles published 

between 2015 and 2025. The articles were analyzed based on key parameters, including geographic context, spatial analysis methods, 

software used (e.g., ArcGIS, ERDAS, Google Earth Engine), types of classification models (e.g., CA-Markov, Random Forest, SVM), 

and theoretical frameworks. The review also considered novelty, limitations, and future research directions highlighted by each study. 

The review found that CA-Markov modeling, supervised classification, and Random Forest are the most frequently applied spatial 

analysis techniques. A notable trend is integrating machine learning with remote sensing, particularly through platforms like Google 

Earth Engine. While ArcGIS remains dominant, open-source tools like QGIS and Python-based APIs are gaining traction. Data 

availability, spatial resolution, and lack of socio-economic integration often limit studies. Theoretical frameworks, such as Human–

Environment Interaction Theory and urban ecological theory, were commonly employed to interpret the findings. Geospatial 

methodologies in land change science have advanced significantly, enabling more dynamic, scalable, and accurate assessments of 

environmental change. Future research should focus on integrating socio-economic variables, enhancing ground validation, and 

developing hybrid models that leverage AI and big data to achieve a more holistic understanding of land system science. 
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1. INTRODUCTION 

Over the past two decades, land use and land cover changes in urban and rural areas have become crucial in global 

geospatial studies. The use of geospatial intelligence, including remote sensing, geographic information systems (GIS), 

and spatial predictive models such as CA-Markov, MLP, and Random Forest, has broadened the understanding of the 

dynamics of LULC (land use and land cover) changes in various regions of the world. Studies conducted in South Asia, 

East Africa, and Latin America, as seen in studies by [1], [2], and [3], demonstrate that demographic pressures, urban 

growth, and economic transformation are driving significant changes in land use. On the other hand, ecological 

degradation, such as deforestation and the loss of water bodies, is increasingly evident as a direct result of land conversion 

to built-up areas or intensive agriculture[4]. Studies in India and Bangladesh have significantly contributed to uncovering 

the dynamics of rapid urbanization and its impact on surface temperature and ecological balance. For example, [5] and 

[6] have shown a decline in vegetation of more than 80% over the last two decades, accompanied by an increase in surface 

temperature (LST) due to the Urban Heat Island (UHI) effect. NDVI and NDBI indices, along with integration with spatial 

regression analysis, are the primary methods for quantifying these changes[7], [8], [9], [10]. In the Pakistan and Ethiopia 

regions, [11] and [12] utilized multi-temporal Landsat imagery to map a significant negative correlation between 

vegetation cover and surface temperature. This emphasizes that changes in the LULC impact not only the spatial-physical 

aspect, but also the microclimate and environmental health of [13]. 

Studies focusing on conservation areas such as biosphere reserves, national parks, and lake ecosystems, such as 

those conducted by [14] in Loktak Lake and [15] in Talra Wildlife Sanctuary, reveal that human pressure through 

agriculture, tourism, and infrastructure development leads to the loss of natural vegetation and rising local temperatures. 

NDVI, LST, and regression analysis algorithm-based approaches are widely used to assess the spatial-temporal impact 

of LULC changes. Decreased vegetation and grassland area strongly correlate with increased temperatures and reduced 

air and water quality. In this context, research by [8] in Pakistan adds a public health dimension by linking land-use 

change to declining groundwater quality, due to pollutant infiltration from urban and agricultural activities. Some studies 

utilize machine learning and deep learning approaches to model projected changes in LULC until 2050 or even 2100. The 

use of the MLP-Markov model by [16], as well as the integration of Random Forest and CA-Markov by [17] and [18], 

allows accurate spatial forecasting of the distribution of built-up areas, vegetation, and water bodies. The advantage of 

this approach lies in its ability to accommodate various input variables such as elevation, road distance, [19]The predicted 
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results show a consistent trend: a decrease in natural vegetation and agricultural land and a significant increase in built-

up areas, especially in peri-urban areas and watersheds.[20], [21]. 

Some studies emphasize the ecological and physical aspects, as well as the social dimension and people's 

perceptions of landscape change. [22] In Chile, for example, a viewshed approach was used to examine the differences 

between population perceptions and actual spatial data, demonstrating the importance of integrating qualitative and 

quantitative data in LULC studies. A similar study by [23] In India, weighted spatial regression (GWR) was used to 

identify factors driving urban expansion, such as proximity to roads, centers of economic activity, and administrative 

zoning. This shows that land use change cannot be separated from the socio-political and spatial governance context that 

prevails in each region. In the tropical areas such as Madagascar and the tropical forest regions of Eastern India, research 

by [24] and [4] emphasizes the importance of high spatial resolution in detecting changes in land cover. Using OBIA 

(Object-Based Image Analysis) and very high-resolution satellite imagery, such as the Pleiades, results in up to 94% 

classification accuracy. This technique is particularly effective for complex land cover mosaics, such as mixed agriculture, 

shrubs, and agroforestry areas. In the urban context, research by [25] in Chennai and [26] in Kosovo shows that coastal 

and suburban urbanization has increased average surface temperatures by 2.5–3.5°C in the last twenty years. 

Not only limited to changes in LULC and surface temperature, several studies have linked these spatial 

transformations to soil degradation and erosion risk [27]. A study by [28] in Ethiopia used the RUSLE model to map the 

potential for land loss due to land cover change. The results show that conversion from forests and shrubs to agriculture 

and vacant land exacerbates erosion, with the rate of land loss doubling in the last three decades.[9], [29], [30]. Similar 

findings were found in Ethiopia's Chimbel and Rib watersheds, indicating the urgency of more integrated spatial-based 

conservation interventions. In some cases, using more than a century of historical data opens up insights into the long-

term dynamics of the LULC and its relationship to climate and social change. Research by [31] in Bursa, Turkey, which 

used cadastral maps and aerial photographs from 1858 to 2020, showed different patterns of deforestation and 

depopulation between regions[31]. This contrast reinforces the idea that the dynamics of the LULC were heavily 

influenced by spatial policies, population pressures, and changes in political-economic regimes that lasted for decades. 

Recent research in irrigated areas, such as that conducted by [32] in Sego, Ethiopia, shows that agricultural intensification 

without good water management can lead to significant soil salinization. Non-saline areas decreased drastically while 

highly saline regions increased by 5.5% yearly. This shows another dimension of LULC transformation, namely soil 

quality degradation, which has a long-term impact on food security and land productivity. In contrast, research in tourism 

areas such as Manali [33] shows that the expansion of built-up areas to steep slopes can increase the risk of landslides 

and topographic degradation due to the pressures of tourism sector growth. 

In general, all of the findings from these 62 articles show consistency in terms of key global trends: significant 

increases in built-up areas, decline in natural vegetation, fluctuations in water bodies, and ecological degradation 

accelerated by climate change, urbanization, and non-adaptive land-use policies. The use of cutting-edge geospatial 

methods significantly contributes to the spatial-temporal and predictive understanding of LULC changes and their impact 

on various environmental and social aspects. However, there are still several limitations, such as the lack of integration 

of socioeconomic data, the absence of field validation in some studies, and the dominance of studies in South Asia and 

East Africa, which opens up space for more in-depth exploration of other regions. 

2. RESEARCH METHODOLOGY 

Over the past decade, land change science has increasingly relied on spatial analysis to understand complex 

patterns of land use and land cover change (LULCC). Rapid advancements in remote sensing technologies, geospatial 

tools, and computational models have driven this reliance. A growing body of research has explored a variety of 

methodologies, from traditional classification techniques to sophisticated machine learning algorithms, to monitor and 

predict landscape transformations. However, there remains a need to synthesize how these geospatial methodologies have 

evolved, the theoretical frameworks they employ, and the challenges they face across diverse ecological, urban, and socio-

environmental contexts. 

2.1 Evolution of Geospatial Methodologies in Land Change Science 

The evolution of geospatial methodologies in land change science has witnessed significant advancements in 

modeling techniques over the last decade, particularly with the incorporation of Cellular Automata (CA), Markov Chain 

models, and various hybrid approaches. Central to this evolution is the CA-Markov model, which integrates the spatial 

modeling capabilities of CA with the temporal predictive strengths of Markov chains, yielding improvements in the 

accuracy and reliability of predictions of land use and land cover (LULC) changes. The CA-Markov model has gained 

widespread recognition due to its robustness in simulating complex spatial phenomena. This model combines cellular 

automata's advantages in capturing spatial patterns' dynamics with the Markov process’s capability for future state 

prediction. For instance, Chu et al. highlight how this model enhances forecasts of land use transformations and effectively 

simulates variations in land use structures, providing valuable insights, especially in heterogeneous landscapes such as 

the Three Gorges Reservoir Area in China [34]. Moreover, the model's utility is evident in its application across diverse 

scenarios, such as urban growth and habitat quality assessments [35], [36]. 

https://portal.issn.org/resource/ISSN/2962-3022
http://ejurnal.lkpkaryaprima.id/index.php/juktisi
https://doi.org/10.62712/juktisi.v4i2.604
https://creativecommons.org/licenses/by/4.0/


 p-ISSN: 2962-3022 | e-ISSN: 2963-7104 

Volume 4 No 2 September 2025 

Page: 1085-1103 

http://ejurnal.lkpkaryaprima.id/index.php/juktisi 

DOI: https://doi.org/10.62712/juktisi.v4i2.604  

 

Copyright © 2025 Author(s), Page 1087  

This Journal is licensed under a Creative Commons Attribution 4.0 International License. 

In addition to the CA-Markov approach, other methodologies have also been developed or adapted to tackle unique 

challenges in land use modeling. For example, hybrid methods have emerged, integrating various models to mitigate 

individual weaknesses. Dang and Kawasaki discuss the significant attention towards methodological integration in land 

use change models, emphasizing how combining different techniques enriches predictive capabilities and enhances model 

reliability [37]. The incorporation of machine learning and artificial neural networks with conventional models is also 

becoming mainstream, as observed in studies focused on urban growth predictions, where models like the WOE-CA and 

ANN-CA demonstrate high accuracy in forecasting urbanization trends [35], [38]. Geographically weighted regression 

(GWR) and multi-layer perceptron (MLP) models have also been researched as complementary approaches within land 

change science. These methodologies provide critical insights into spatial heterogeneity and variable interactions that 

affect land use patterns. Applications of GWR can help elucidate the local variations in the relationships between land 

use and its driving socio-economic factors. At the same time, MLP can assist in understanding complex non-linear 

relationships in land cover dynamics [39]. The potential of hybrid models has been increasingly recognized, as further 

studies incorporate aspects of agent-based modeling alongside CA-Markov methods to simulate LULC changes while 

considering socio-economic drivers and environmental constraints [40]. This evolution signifies a substantial shift from 

traditional static models to dynamic, integrated frameworks that enhance the ecological management discourse by 

enabling more nuanced and adaptive strategies in response to land use changes. 

2.2 Remote Sensing Platforms and Their Applications in LULC Studies 

Remote sensing platforms play a pivotal role in the monitoring and understanding land use and land cover 

(LULC) dynamics across various ecosystems. Among these platforms, Landsat, Sentinel, and Google Earth Engine (GEE) 

are particularly significant due to their extensive datasets and applications in environmental science. The Landsat 

program, initiated in 1972, has been instrumental in providing continuous, long-term data about Earth’s surface. Its 

various iterations, including Landsat 5, 7, and 8, have facilitated comprehensive studies of LULC changes. For instance, 

Landsat imagery has been effectively utilized to detect urban expansion and agricultural changes across multiple regions, 

such as New Moscow, where researchers reported a substantial increase in urban area due to LULC transitions from 2012 

to 2018 [41]. Furthermore, Landsat data have proven effective in global studies comparing land use datasets, enhancing 

our understanding of anthropogenic impacts on ecosystems [42]. Sentinel-2, part of the European Space Agency's 

Copernicus program, provides higher resolution imagery compared to its predecessors, making it suitable for more 

detailed land cover assessments. In a study addressing the capabilities of Sentinel-2, it was found that the platform 

excelled in identifying built-up areas, demonstrating a complementarity with Landsat imagery for detailed urban studies 

[43]. This feature aids in monitoring rapid urbanization, thus supporting sustainable development efforts. 

The advent of GEE has revolutionized the use of satellite data by providing a cloud-based platform for large-

scale data processing and analysis. It enables users to quickly access and analyze vast amounts of temporal data from 

Landsat and Sentinel satellites [44]. GEE's integration offers a significant advantage for researchers conducting LULC 

assessments as it allows for efficient processing of historical datasets and extensive applications across various geographic 

contexts [45]. Different methodologies surrounding the classification and analysis of LULC dynamics using these 

platforms have emerged. Techniques such as automated classification and change detection have become essential, 

employing spectral pattern analysis with multi-temporal satellite data for enhanced accuracy [46]. For example, in studies 

conducted in Assam, India, researchers incorporated remote sensing with Geographic Information System (GIS) 

techniques to identify land cover changes effectively from 1977 to 2010, showcasing the power of combining various 

data sources for LULC monitoring [47]. Moreover, the utility of remote sensing in analyzing thermal dynamics associated 

with LULC change has been highlighted in several studies. Landsat's thermal infrared sensors have been utilized to 

understand the effects of urban heat island on the island, thus illustrating how land cover changes can impact local climates 

[48]. This intersection between remote sensing, temperature measurements, and LULC provides insights into 

environmental changes that directly affect urban livability and ecological sustainability. 

 

2.3 Machine Learning and Artificial Intelligence for Spatial Pattern Detection 

Machine Learning (ML) and Artificial Intelligence (AI) techniques have significantly transformed spatial pattern 

detection, particularly in Land Use and Land Cover (LULC) classification and prediction. Prominent algorithms such as 

Random Forest, Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Deep Learning models are 

increasingly favored for their robust performance in accurately classifying complex spatial data. Random Forest is 

recognized for its ensemble learning capabilities, allowing it to manage high-dimensional feature spaces commonly found 

in LULC data. It builds multiple decision trees and merges their predictions to improve accuracy and control overfitting 

[49]. In various studies, Random Forest has shown significant efficacy in handling noisy data, demonstrating high 

classification performance relative to other algorithms [49], [50]. Notably, the method's ability to estimate feature 

importance aids in understanding which spectral and spatial features are most relevant for effective classification, which 

is crucial in environmental monitoring and resource management. 

SVMs, celebrated for their robust handling of multi-class classification problems, are particularly advantageous 

due to their ability to define optimal hyperplanes in high-dimensional spaces. The integration of kernel functions allows 

SVM to address non-linearity in data, making it suitable for complex datasets typical of hyperspectral imagery [51]. In 

LULC applications, SVMs have been combined with spectral-spatial approaches to enhance classification accuracy by 
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utilizing the spectral characteristics of pixels and their spatial relationships [52]. Furthermore, recent advancements 

include subspace methods to improve SVM’s performance in mixed pixels and noisy environments [51], pushing the 

boundaries of traditional classification strategies. 

Artificial Neural Networks (ANNs) represent another significant tool in spatial pattern recognition. With their 

capacity to learn from large datasets, ANNs excel in identifying intricate patterns that may not be readily apparent to 

other algorithms [53]. Research has demonstrated that ANNs can effectively classify land cover types with high precision 

by learning spatial representations from training data, reflecting their applicability in real-world scenarios [53], [54]. 

Moreover, the hierarchical nature of deeper neural networks, particularly Convolutional Neural Networks (CNNs), 

enhances their ability to capture spatial hierarchies from raw spectral data, further improving classification outcomes in 

LULC tasks [50]. Deep Learning, particularly through CNNs, has emerged as a powerful approach in the field due to its 

ability to process large volumes of data while automatically extracting hierarchical features. CNNs have been successfully 

employed in semantic segmentation tasks for LULC classification, demonstrating advantages in capturing complex 

patterns through layers of feature abstraction [50], [52]. The recent trend towards semantic segmentation using ultra-high-

resolution imagery highlights how CNNs can provide granular insights into land features, which is essential for urban 

planning and environmental analysis [50], [55]. 

 

2.4 Theoretical Foundations in Geospatial Land Change Research 

The theoretical foundations of geospatial land change research encompass various interconnected frameworks 

that facilitate understanding the complex interactions between human and environmental systems. Key theories in this 

field include Human-Environment Interaction, Urban Ecology, Landscape Risk, and Land Systems Science, each 

contributing unique perspectives and methodologies. Human-Environment Interaction encompasses the dynamic 

relationships between societal activities and natural systems. Geographic Information Systems (GIS) and Geospatial Data 

Science have significantly advanced the understanding of these interactions. Innovations in data collection and spatial 

analysis enable examining how human actions influence the environment and vice versa. For instance, Packard 

emphasizes that advanced geospatial technologies allow researchers to explore the intricate relationships in human-

environment systems, leveraging large datasets and sophisticated analytic tools for a comprehensive understanding [56]. 

Similarly, Huang illustrates the integration of land use and land cover (LULC) dynamics with water quality monitoring, 

highlighting the direct impacts of urbanization on local eco-hydrological systems [57]. Collectively, these studies 

underline the importance of employing geospatial methodologies to decode the nuances of the human effects on 

environmental landscapes. 

Urban Ecology focuses on interactions in urban settings, particularly how urbanization affects biodiversity and 

ecosystem services. The dual pressures of urban expansion and increasing population densities challenge traditional 

ecological models, which often fail to account for the unique variables present in urban environments. Research conducted 

by Sumari et al. on urban expansion through temporal monitoring reveals how geospatial methods can quantify 

agricultural land loss amidst urban growth, thus illustrating critical patterns of land cover change [58]. Furthermore, Dixit 

et al. discuss establishing demographic and environmental geospatial surveillance platforms to integrate various analyses 

that support better urban planning and resource management [59]. These studies emphasize the need for urban ecology to 

adopt geospatial analysis to manage urban complexities effectively. Landscape Risk theory analyzes the potential 

consequences of land-use changes on ecological and societal well-being. This framework aids in assessing vulnerabilities 

inherent in landscapes, informing conservation strategies and sustainable land management practices. The combination 

of remote sensing and GIS allows for a spatial examination of risks related to land-use changes, as demonstrated by 

Rwanga and Ndambuki, who assess land cover classification accuracy through remote sensing techniques, enhancing the 

understanding of landscape dynamics [60]. Moreover, the work of Verburg et al. highlights how understanding land 

systems provides insight into sustainability challenges faced by socio-ecological systems, particularly in terms of 

recognizing trade-offs involved in land-use decisions [61]. These insights are vital for developing strategies that mitigate 

landscape risks while balancing human needs and ecological integrity. 

Land Systems Science (LSS) integrates multiple disciplines to explore how land system changes impact 

environmental and socio-economic contexts. As articulated by Gosnell et al., LSS emphasizes the importance of 

combining remote sensing data with social science methodologies to understand the governance of land use and forest 

resources [62]. This integrative approach allows researchers to unravel complex feedback loops between human activities 

and ecological responses, facilitating multiple-scale policy assessments. Furthermore, foundational theories in this realm 

focus on biophysical aspects and account for socio-cultural dynamics that influence land decision-making processes. 

Thus, LSS serves as a pivotal framework for understanding the interplay between human systems and land-use patterns, 

fostering adaptive management strategies in response to environmental changes. 

 

2.5 Challenges in Spatial Analysis for LULCC Research 

Spatial analysis for land use and land cover change (LULCC) faces numerous challenges, including data 

accuracy limitations, field verification difficulties, socio-economic integration, and spatial scale issues. Each of these 

challenges can significantly hinder the quality and applicability of LULCC research. One of the most prevalent issues is 

the accuracy and consistency of land cover data. Woods et al. highlight that the pervasive nature of armed conflicts can 

lead to inconsistent data related to deforestation, as these events are often geographically diffuse and multifaceted [63]. 
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Additionally, uncertainties in historical land cover conversion can complicate our understanding of carbon and climatic 

projections, suggesting that better characterizations of LULCC are essential for improved modeling [64]. Moreover, 

Castillo et al. indicate that the use of remote sensing data for LULCC monitoring often relies on the availability and 

quality of GIS technologies, which can introduce biases and inaccuracies in the derived datasets [65]. Field verification 

presents another significant challenge in LULCC research. Accurate ground-truthing is necessary to validate remotely 

sensed data, yet limited access and resources can impede the collection of field data, affecting the reliability of LULCC 

studies. For example, a study by Wang et al. in subtropical regions of South Africa demonstrated that the effectiveness of 

remote sensing methods, particularly various classification techniques, impacted the accuracy of LULCC assessments 

[66]. This indicates that field verification is pivotal in confirming the findings derived from remote sensing methods. 

Socio-economic factors add another layer of complexity to LULCC analyses. The integration of socio-economic 

data is crucial in understanding the driving factors behind land-use changes. Research suggests that population dynamics, 

economic growth, and urban expansion significantly affect land cover alterations [67], [68]. Emphasize that discrepancies 

in socio-economic data can lead to substantial gaps in understanding LULCC drivers across different geographical 

regions, indicating a need for more robust integration of socio-economic aspects in LULCC studies [68]. Finally, 

challenges arise from the scale at which LULCC data are collected and analyzed. Multi-model global-scale simulations 

present an opportunity for comprehensive studies; however, these models still face limitations due to variabilities across 

different spatial and temporal scales [69]. Research by Luo et al. further illustrates that the spatial downscaling of LULCC 

projections can introduce uncertainties that complicate predictions regarding terrestrial carbon cycling [70]. Integrating 

different spatial scales in LULCC research is critical to generate reliable insights and policy recommendations. 

 

2.6 Future Trajectories of Spatial Analysis in Sustainable Land Management 

Future trajectories of spatial analysis in sustainable land management (SLM) are increasingly focusing on 

innovative methodologies incorporating data fusion, real-time monitoring, and policy-based models. The integration of 

these elements is essential for enhancing land management practices to respond effectively to global challenges such as 

urbanization, climate change, and resource scarcity. Data fusion is becoming a cornerstone for spatial analysis in land 

management, as it provides the means to integrate multiple data sources to enhance the accuracy and reliability of land 

use and cover assessments. For instance, remote sensing technologies combined with geographic information systems 

(GIS) facilitate the combination of optical and radar data, improving land use mapping and monitoring capabilities. This 

integration addresses key challenges in land use classification, such as variability in spatial resolution and inherent 

uncertainties in data sources [71]. Moreover, advanced approaches utilizing spatiotemporal data fusion and Cellular 

Automata-Markov models have been shown to enhance detection and prediction of land use changes, thereby better 

informing land management decisions [72]. These methods improve data quality and provide real-time analytics that 

support dynamic land management strategies. 

Additionally, real-time monitoring of land use changes is critical for adapting to rapidly evolving socio-economic 

conditions and environmental policies. Remote sensing technologies now offer increased temporal resolution, enabling 

continuous observation of land conditions [73]. This capability is vital for keeping abreast of transformation patterns, 

such as urban expansion and its implications for ecosystem services [74]. Furthermore, methodological approaches that 

utilize machine learning and artificial intelligence contribute to more nuanced analyses of spatial relationships and 

changes, supporting timely interventions [75]. Thus, integrating real-time monitoring with advanced analytics reinforces 

the adaptability of land management systems. Policy-based models are also expanding the practical applications of spatial 

analysis in sustainable land management. The utilization of land-use simulation models, such as the CLUE-S model and 

its derivatives, allows for the assessment of different land use scenarios under varying socio-economic conditions [76]. 

These models enable policymakers to simulate the effects of land use policies on future land conditions, thus fostering 

realistic planning based on empirical data. Integrating spatial analysis into policy frameworks will ultimately guide 

decision-makers in balancing environmental conservation with development needs. 

Understanding the socio-economic drivers of land use change remains crucial for future research directions. 

Studies like those reviewed by [53] highlight the need for assessments of land resource carrying capacity, indicating that 

varying scales require tailored evaluation indicators to reflect local conditions [77]. Acknowledging the complexity of 

land use dynamics, including climate impacts and anthropogenic factors, suggests further inquiry into adaptive 

management strategies [78]. Sustainable land management can be significantly advanced by addressing these challenges 

and leveraging spatial analysis technologies. 

3. RESULTS AND DISCUSSION 

This systematic literature review (SLR) was designed following three well-established protocols: PRISMA 2020 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses. These frameworks collectively guided the article 

selection, screening, data extraction, and synthesis process to ensure transparency, rigor, and reproducibility. 

 

3.1 Review Protocols and Guidelines 

This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

guidelines to ensure transparency and reproducibility throughout the systematic review process: 
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1. PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

 

 
 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 

 

The systematic literature review (SLR) adhered to the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines [79]. To ensure rigorous methodology and transparent reporting. The identification 

stage began with a keyword-driven search using the term "Geospatial Land Cover Use" within the Scopus database, 

selected for its stringent indexing criteria and high-quality scholarly content [80], [81]. Scopus was prioritized over 

alternatives like Google Scholar due to the latter's limitations, including redundant results, duplicate entries, and inclusion 

of articles from predatory journals [82]. The initial search yielded 134 records, which were systematically filtered to 

exclude duplicates (n=0), studies outside the target timeframe (2015–2025; n=3), those not meeting journal-tier criteria 

(Q1–Q4; n=12), and articles lacking abstracts (n=1), resulting in 112 records proceeding to screening.  

During the screening phase, titles and abstracts were evaluated for relevance, excluding one record deemed out 

of scope. Full-text retrieval attempts for 111 reports led to the exclusion of 49 due to unavailability or language barriers. 

The eligibility assessment retained 62 studies that met predefined criteria, such as methodological rigor and thematic 

alignment with geospatial land cover analysis. No additional articles were sourced from alternative platforms (e.g., the 

Watase database), as reflected in the PRISMA flowchart. The final stage included 62 studies, analyzed qualitatively using 

thematic synthesis facilitated by the Watase Uake System (Wahyudi, 2024), a tool designed to streamline systematic 

review processes. This approach ensured adherence to PRISMA's emphasis on transparency and reproducibility, 

enhancing the validity of findings across disciplines. [83], [84]. The entire process underscored the critical role of keyword 

precision, database selection, and iterative filtering in achieving robust, evidence-based conclusions. 

 

3.2 Database and Search Strategy 

The articles that are the subject of a systematic review were obtained from various primary and secondary data 

sources focusing on geospatial methodologies in the science of land change. The central databases used are Scopus, Web 

of Science, and Google Scholar, with high priority given to Scopus due to its strict index and high quality of publications 

[80], [81]. To complete the search, articles are obtained from platforms like SpringerLink, ScienceDirect, and 

ResearchGate. The keywords used include a combination of terms such as "geospatial techniques", "land use/land cover 

change", "remote sensing", "GIS", and "spatial analysis". Articles are screened based on inclusion criteria such as 
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publication time range (2015–2025), topic relevance, and availability of abstract and full-text. Articles that do not meet 

these criteria are removed at an early stage. The initial search process yielded 134 articles, which were then filtered to 

eliminate duplication (n=0), articles outside the time range (n=3), articles from non-Q1 to Q4 journals (n=12), and articles 

without abstracts (n=1), leaving 112 articles for screening. After further evaluation of the relevance of the content, 62 

articles were selected for in-depth analysis. These articles were imported into a structured extraction table covering core 

analytical parameters: country of study, methodological approach, analytical software, spatial models, grand theory, 

novelty, limitations, and future recommendations. It can be seen in Table 1: 

Table 1. Search and Selection Summary 

Parameters Details 

SLR Title Advances in Spatial Analysis for Land Change Science: A Systematic Review 

of Geospatial Methodologies 

Main Database Scopus 

Keywords Geospatial Land Cover Use 

Publication Time Covered 2015-2025 

Inclusion Criteria Topic relevance: 

a) Time range (2015–2025) 

b) Indexed journals Q1–Q4 

c) Availability of abstract and full text 

Exclusion Criteria a) Articles outside the time range 

b) Articles without an abstract or full text 

Total Initial Articles 134 

Article After Deduplication 134 (No duplication) 

Articles Deleted a) articles outside the time range: 3 

b) articles from non-Q1 to Q4 journals: 12 

c) articles without abstracts 

Article After Screening 112 

Final Article 62 (after relevance and qualitative evaluation) 

Analysis Methodology Thematic Based on Watase-Uake 

 

The table and narrative above provide a complete overview of the database and article search strategies for this 

SLR. This approach ensures the resulting articles are relevant, valid, and fit the research objectives. 

3.3 Review Period and Scope 

The present systematic review examines the evolution and application of geospatial methodologies in land 

change science over ten years, from 2015 to 2025. This review period was selected to capture contemporary developments 

in spatial modelling, remote sensing, and the integration of artificial intelligence within land use and land cover change 

(LULCC) research. The temporal window aligns with the significant proliferation of open-access satellite data, advances 

in machine learning algorithms, and the increased accessibility of cloud-based geospatial platforms. 62 peer-reviewed 

articles were included in the final synthesis, following the multi-stage screening process outlined in the PRISMA protocol 

and refined by the Watase–Uake framework. Studies were drawn exclusively from the Scopus database and reflect a 

research concentration in rapidly urbanizing and ecologically sensitive regions. Geographically, the corpus spans 13 

countries, with India contributing the majority (n=37), followed by Ethiopia, Pakistan, Bangladesh, and other Global 

South nations experiencing accelerated land transitions. The scope of the review encompassed a wide range of spatial 

approaches, including supervised classification, predictive modeling (e.g., CA–Markov, Random Forest), spatial 

regression (e.g., GWR), and hybrid machine learning models. The use of various software platforms such as ArcGIS, 

QGIS, TerrSet, ERDAS Imagine, and Google Earth Engine supported these. Conceptual and theoretical underpinnings 

were also considered, with frequent application of Human–Environment Interaction Theory, Urban Ecology, and Land 

System Science perspectives. These representatives are shown in the following Table 2: 

 

Table 2. Scope of Reviewed Studies (2015–2025) 
 

Aspect Details 

Review period 2015–2025 

Articles reviewed 62 peer-reviewed studies 

Geographic focus 13 countries, primarily India, Ethiopia, Pakistan, Bangladesh 

Dominant tools ArcGIS, ERDAS Imagine, TerrSet, Google Earth Engine, QGIS 

Core methodologies CA–Markov, Random Forest, MLC, SVM, GWR, Shannon's Entropy 

Spatial applications Urban expansion, forest monitoring, watershed assessment 

Theoretical frameworks Human–Environment Interaction, Urban Ecology, Land System Science 
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This review offers a cross-section of contemporary geospatial research practices, highlighting methodological 

innovation and persistent limitations related to spatial resolution, socio-economic integration, and field validation. 

 

3.4 Data Synthesis and Mapping 

The data synthesis process followed a thematic coding approach informed by the framework of Watase and 

Uake. Each of the 62 selected studies was reviewed using a structured data extraction matrix that captured essential 

metadata and analytical components. The analysis focused on five primary dimensions: geographic context, 

methodological approach, spatial modeling techniques, software tools, and theoretical frameworks. Thematic mapping 

enabled the identification of recurring trends, research gaps, and spatial patterns across diverse contexts. The synthesis 

revealed a strong concentration of studies in South and Southeast Asia, particularly India (37 studies), followed by 

Ethiopia, Pakistan, and Bangladesh. A range of geospatial tools—most prominently ArcGIS, ERDAS Imagine, and 

TerrSet—were consistently used to support spatial classification, simulation, and modeling. CA–Markov, Random Forest, 

Maximum Likelihood Classification (MLC), and Shannon’s Entropy emerged as the most frequently employed models. 

Theoretical lenses were dominated by Human–Environment Interaction Theory, Urban Ecological Theory, and Land 

System Science, offering explanatory depth to spatial trends. Notably, recent studies demonstrated increasing integration 

of machine learning methods and hybrid modeling techniques, signaling a methodological evolution in land change 

research. 

 

 
(a)                                                            (b)                                                    (c) 

 

Figure 2. (a) Geographic Distribution of Studies, (b) Frequency of Spatial Models Used, (c) Temporal Trends in 

Methodologies 

 

Here are the three visualizations based on your SLR data: 

a. Geographic Distribution of Studies: India is the dominant contributor, followed by Ethiopia, Pakistan, and 

Bangladesh. 

b. Frequency of Spatial Models Used – highlighting CA-Markov and Random Forest as the most frequently applied 

geospatial models. 

c. Temporal Trends in Methodologies – a heatmap illustrating how the use of models like MLC, SVM, and MLP has 

evolved over four time periods (2015–2025). 

 

3.5 Results 

This section presents the key findings from synthesizing 62 peer-reviewed studies analyzed in this systematic 

review. The results are organized thematically to reflect major trends in geographic focus, geospatial tools and models 

applied, theoretical frameworks adopted, novel contributions, and common limitations. These insights provide a 

comprehensive overview of how spatial analysis has advanced land change science over the past decade. 

 

3.5.1. Geographic Distribution of Studies 

The geographic distribution of studies reveals a notable concentration in South Asia, particularly India, which 

accounts for 37 out of 62 reviewed articles. Other significant contributors include Ethiopia (10 studies), Pakistan (5), and 

Bangladesh (4). This regional clustering aligns with rapid urbanization, environmental degradation, and growing research 

capacities in these areas. A smaller number of studies were identified from countries like Algeria, Turkey, Iraq, and 

Madagascar, categorized under “Others”. The trend underscores the dominance of developing nations as both subjects 

and sources of geospatial land change research, as shown in the following bar chart: 
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Figure 3. Bar Chart Country Classification Geographic Distribution of Studies 

 

3.5.2. Analytical Tools and Software 

The analysis shows a clear preference for proprietary GIS platforms, with ArcGIS used in 48 studies, making it 

the most dominant software in LULCC research. ERDAS Imagine follows with 30 studies, commonly used for satellite 

image classification and change detection. TerrSet, recognized for its integrated Land Change Modeler and CA–Markov 

simulation capabilities, was used in 18 studies. Notably, Google Earth Engine (12 studies) has gained traction recently 

due to its cloud computing functionality and access to large-scale datasets. QGIS, a free and open-source platform, 

appeared in 15 studies, highlighting growing interest in accessible spatial tools, as shown in the following bar chart: 

 

 
 

Figure 4. Bar Chart Analytical Tools and Software 
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3.5.3. Year Article Classification 

The graph shows the number of classified articles per year from 2015 to 2025. It can be seen that 2022 recorded 

the highest number of articles, with 16 articles, which shows a significant surge compared to previous years. 2023 also 

increased, with 9 articles, while 2024 had 12 articles. On the other hand, previous years, such as 2015 to 2021, show a 

relatively low number, ranging from 1 to 8 articles. By 2025, the number of articles will decrease again to 4, which may 

indicate a decrease in interest or volume of article classification in that year. The chart also uses different colors for each 

year, with the standout 2022 using a bright orange color, reflecting the very high number of articles in that year. Overall, 

there was an upward trend in the number of articles recorded from 2015 to 2023, with a peak in 2022, before another 

decline in 2025. For further analysis, it is important to understand the factors that influence the surge in 2022 and the 

decline in 2025, such as changes in platforms or policies related to article publication, as shown in the following bar chart: 

 

 
 

Figure 5. Bar Chart Year Article Classification 

3.5.4. Journal Classification 

The graph shown shows the classification of journals based on the number of articles published in various 

scientific journals. This graph compares 16 different journals by the number of articles classified. The GeoJournal and 

Applied Geomatics journals have the highest number of articles, each with five articles, which shows that both have 

significant contributions in their fields. Several other journals, such as Environmental Monitoring and Assessment and 

Data in Brief, each have four articles, showing a relatively high number. Meanwhile, journals such as Sustainability, 

Environmental Science and Pollution Research, and the Journal of the Saudi Society of Agricultural Sciences recorded 

three articles in each category. In addition, some journals have lower contributions, such as The Egyptian Journal of 

Remote Sensing and Space Science, Journal of the Indian Society of Remote Sensing, and Heliyon, each of which has 

only 1 article. The colors used in this graph make it easy to identify different journals, with each color representing a 

specific category of journals, as shown in the following bar chart: 
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Figure 6. Bar Chart Journal Classification 

 

3.5.5. Tier Journal Classification 

The graph shown shows the classification of journals by tier or quality level, which is divided into four 

categories: Q1, Q2, Q3, and Q4. It can be seen that the journals with Q1 (the highest category) have the highest number, 

namely 28 articles, which shows that most of the publications analyzed are listed in journals with the highest level of 

quality. The journals classified in Q2 also showed a considerable number, with 26 articles, which shows that excellent 

publications are still listed in this category. On the other hand, the Q3 and Q4 categories have a lower number, each with 

four articles. This indicates that few publications are listed in lower-quality journals according to this tier system, as 

shown in the following bar chart: 

 

 
 

Figure 7. Bar Chart Tier Journal Classification 
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3.5.6. Theory Classification 

The graphs shown illustrate the classification of various theories in the research context, focusing on various 

topics related to the environment, land change, and ecology. It can be seen that the human-environment interaction theory 

dominates this graph with 20 articles, which shows that this theory greatly influences the field of research discussed. On 

the other hand, other theories, such as Urban Ecological Theory, Land Degradation Theory, and Landscape Pattern 

Analysis Theory, each have four articles, showing considerable interest, although not as popular as Human–Environment 

Interaction Theory. Theories with a lower number, such as the Historical Landscape Transformation Theory and the 

Cellular Automata (CA) model, are recorded with only two or three articles, indicating that these topics are less discussed 

in the collected research. The colors used in these graphs make it easier to identify and compare theories, with brighter 

colors representing more dominant theories and faded colors representing less frequently used theories, as shown in the 

following bar chart: 

 

 
 

Figure 8. Bar Chart Theory Classification 

 

3.5.7. Methods Classification 

The graph shows the classification of various research methods used in geospatial-related studies and mapping 

using remote sensing and GIS (Geographic Information Systems) technology. This graph shows that Geospatial analysis 

dominates with the highest number, namely nine articles, which shows that this method is widely used in the studies 

discussed. Remote sensing and GIS appeared with a significant number of 4 articles, while Remote Sensing and GIS 

analysis had three articles each. Other methods, such as Geospatial modeling, Geospatial mapping, and Geospatial 

techniques, recorded 2 articles in each category, showing a more limited but significant use. Some of the more specific 

methods, such as the Hybrid Model Combining Linear Regression and Machine Learning, Landsat 7 and Resourcecast 

2A satellite data, and the RUSLE model, have only 1 article, which indicates that these methods are rarely used in this 

study. The colors used in the graph help distinguish each category of methods, with brighter colors such as red and green 

representing more widely used methods, while faded colors such as brown and gray indicate less-used methods, as shown 

in the following bar chart: 
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Figure 9. Bar Chart Methods Classification 

 

3.6 Discussion 

This section interprets the systematic review's findings to provide a critical understanding of current geospatial 

methodologies used in land change science. The aim is not only to summarize the results but to evaluate their implications 

within the broader body of knowledge, identify methodological and conceptual limitations, and provide evidence-based 

recommendations for future research. Through comparative analysis and theoretical contextualization, this discussion 

offers insights into how spatial tools and modeling approaches contribute to the evolving landscape of land system 

science. 

 

3.6.1. Assessment of Current Methodological Insights 

The dominance of CA–Markov, Random Forest, and Maximum Likelihood Classification reflects a strong 

preference for models that balance predictive capability with operational simplicity. The frequent application of these 

models aligns with prior literature [85], confirming their reliability in simulating land dynamics. However, the emergence 

of hybrid and machine learning–based approaches suggests that geospatial research is shifting toward more integrative, 

data-driven methods. This shift reflects technological accessibility (e.g., Google Earth Engine) and increasing demand 

for high-resolution forecasting. 

 

3.6.2. Comparison with Existing Literature 

The geographical concentration of studies in India, Ethiopia, and Pakistan parallels global patterns observed by 

other systematic reviews [86], which suggest that land change research is most active in areas experiencing rapid socio-

economic transitions. What distinguishes the present review is the attention to the diversity of tools and the growing use 

of open-source software. This review emphasizes methodological transparency, reproducibility, and theoretical grounding 

compared to earlier syntheses that emphasized model performance. 

 

3.6.3. Theoretical Contextualization 

While human-environment interaction theory and urban ecological theory provide a consistent explanatory 

framework, their dominance also reveals a missed opportunity to expand into more integrative or dynamic conceptual 

lenses, such as socio-technical transitions or political ecology. This limits the ability of current studies to explain land 

change as a product of complex, multi-scalar processes. Future research should consider embracing cross-disciplinary 

theory to reflect better the socio-political realities influencing land systems. 

 

3.6.4. Limitations and Validity Concerns 

Despite significant methodological advances, several limitations affect the robustness of current spatial analysis 

in LULCC: 

1. Resolution dependency: Heavy reliance on medium-resolution imagery (e.g., Landsat) limits detection of fine-

grained changes. 
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2. Limited validation: Ground-truthing and field-based validation remain scarce, weakening model confidence. 

3. Narrow data integration: Many studies fail to incorporate socio-economic or institutional data critical to interpreting 

spatial patterns. 

These limitations mirror concerns raised in prior reviews [87] and represent enduring methodological gaps that 

must be addressed to improve the real-world applicability of spatial models. 

 

3.6.5. Recommendations for Future Research 

To strengthen the methodological and conceptual foundations of land change science, future studies should: 

1. Expand the use of open-source, cloud-based platforms to democratize access and promote reproducibility. 

2. Apply hybrid and ensemble models that combine deterministic and AI-based methods for more robust forecasting. 

3. Integrate ground-based data and participatory approaches to enhance the analysis's validity and contextual depth. 

4. Adopt interdisciplinary theoretical frameworks to capture the socio-political drivers of land change. 

5. Ensure regional diversity in study sites to improve the generalizability of findings beyond South Asia and Sub-

Saharan Africa. 

 

In summary, this review highlights a field in transition—where traditional spatial analysis methods are 

increasingly complemented by advanced, integrative, and machine learning–based approaches. While substantial 

methodological progress has been made, challenges remain in data resolution, model validation, and theoretical diversity. 

The predominance of studies from specific regions and reliance on established tools underscore the need for more 

inclusive, interdisciplinary, and context-sensitive research in land change science. By critically reflecting on existing 

practices and emerging directions, this discussion advocates for a more holistic geospatial research agenda that bridges 

scales, integrates social dimensions, and aligns spatial analysis with pressing environmental and policy concerns. 

4. CONCLUSION 

This systematic review synthesizes a decade of geospatial research in land change science, drawing on 62 peer-

reviewed studies to evaluate methodological trends, theoretical orientations, and spatial modeling practices. The findings 

reveal a strong reliance on established tools such as ArcGIS, CA–Markov, and Random Forest, pointing to a gradual yet 

significant shift toward hybrid, machine learning–driven approaches supported by cloud computing platforms like Google 

Earth Engine. The review underscores the methodological maturity of the field, yet highlights persistent limitations—

particularly in terms of spatial resolution, data integration, and ground validation. Moreover, the dominance of studies 

from select regions calls for greater geographic and thematic diversification. Future research should emphasize 

interdisciplinarity, reproducibility, and practical relevance. This includes integrating socio-environmental data, adopting 

open-source solutions, and aligning modeling outcomes with sustainable land management goals. By advancing both 

methodological depth and contextual insight, geospatial science can play a more pivotal role in informing land governance 

in an era of rapid environmental transformation. 
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