Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Kerapihan Ruangan

Authors

  • Irfan Andito Mahameru Universitas Islam Negeri Sunan Ampel Surabaya
  • Ravly Dwi Septian Universitas Islam Negeri Sunan Ampel Surabaya
  • Dwi Rolliawati Universitas Islam Negeri Sunan Ampel Surabaya
  • Mujib Ridwan Universitas Islam Negeri Sunan Ampel Surabaya

DOI:

https://doi.org/10.62712/juktisi.v4i2.606

Keywords:

CNN, Kerapihan Ruangan, Sigmoid, Data Augmentation, VGG16

Abstract

This study implements a Convolutional NeurallNetwork (CNN) to classify room images into two categories: messy and clean. The model utilizes VGG16 as a feature extractor, followed by fully connected layers and a sigmoid activation function in the output layer. This approach is simpler compared to the softmax scheme, which is commonly used for multi-class classification. The dataset was augmented to enhance the model's generalization. Evaluation results show a validation accuracy of 98,63%, indicating the effectiveness of the model in binary classification tasks

Downloads

Download data is not yet available.

References

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, 2006, doi: 10.1016/j.patrec.2005.10.010.

A. Putri et al., “Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 20–26, 2023, doi: 10.57152/malcom.v3i1.610.

M. F. Naufal, J. Siswantoro, and M. G. K. Wicaksono, “Klasifikasi Tulisan Tangan Pada Resep Obat Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 2, pp. 508–526, 2023, doi: 10.33633/tc.v22i2.8075.

N. Atika, “Evaluation of Service Quality Through ITIL V3 Framework in the Service Design Domain (Case Study: Lazada Application),” IJIIS Int. J. Informatics Inf. Syst., vol. 7, no. 1, pp. 29–34, 2024, doi: 10.47738/ijiis.v7i1.188.

L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” J. Phys. A Math. Theor., vol. 44, no. 8, pp. 1–14, 2011, doi: 10.1088/1751-8113/44/8/085201.

Hutasuhut, “Implementation of Office Inventory Application for Asset Efficiency,” vol. 4, pp. 1–12, 2024.

N. R. Setyoningrum, “Analisis Tingkat Kepuasan Pengguna Sistem Informasi Kerja Praktek dan Skripsi (SKKP) Menggunakan Metode End User Computing Satisfaction (EUCS),” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 17–21, 2020, doi: 10.30871/jaic.v4i1.1645.

S. Hastini et al., “Analisis IT Service Management pada Transportasi Online Menggunakan ITIL Versi 3 Domain Service Operation,” vol. 6, no. 1, pp. 32–37, 2025.

A. Rahman, E. Satispi, and D. L. Adiyasha, “Perbandingan E-Government Antara Singapura Dan Jepang: Perspektif Determinan Dan Perannya Dalam Mengefektifkan Pemerintahan Dan Mengendalikan Korupsi,” J. Adm. Publik, vol. 6, no. 2, pp. 178–199, 2020.

A. Mulyanto, “Penerapan Technology Acceptance Model ( TAM ) dalam Pengujian Model Penerimaan Aplikasi MasjidLink,” vol. 23, no. 1, pp. 27–38, 2020, doi: 10.18196/st.231253.

C. Bertagnolli, “Delle vicende dell’agricoltura in Italia; studio e note di C. Bertagnolli.,” Delle vicende dell’agricoltura Ital. Stud. e note di C. Bertagnolli., vol. 13, no. 3, pp. 319–340, 2011, doi: 10.5962/bhl.title.33621.

Rina Noviana, “Pembuatan Aplikasi Penjualan Berbasis Web Monja Store Menggunakan Php Dan Mysql,” J. Tek. dan Sci., vol. 1, no. 2, pp. 112–124, 2022, doi: 10.56127/jts.v1i2.128.

I. N. Pujawan and A. U. Bah, “Supply chains under COVID-19 disruptions: literature review and research agenda,” Supply Chain Forum, vol. 23, no. 1, pp. 81–95, 2022, doi: 10.1080/16258312.2021.1932568.

B. Ayan Ahamad, S. Vikas S., and G. Madhusudan Ramdas, “AI Based Smart Robot (Chatbot) using Python,” Int. J. Innov. Sci. Res. Technol., vol. 9, no. 3, pp. 569–572, 2024, doi: 10.38124/ijisrt/ijisrt24mar521.

R. Sabila, A. Pratama, and E. M. Safitri, “Evaluation Virtual Assistant Chatbot Acceptance with an Unified Technology Acceptance and Use of Technology-Based Model,” J. Inf. Syst. Informatics, vol. 6, no. 2, pp. 919–936, 2024, doi: 10.51519/journalisi.v6i2.744.

Downloads

Published

2025-09-22

How to Cite

Mahameru, I. A., Ravly Dwi Septian, Dwi Rolliawati, & Mujib Ridwan. (2025). Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Kerapihan Ruangan. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(2), 1264–1271. https://doi.org/10.62712/juktisi.v4i2.606