Advances in Spatial Analysis for Land Change Science: A Systematic Review of Geospatial Methodologies
DOI:
https://doi.org/10.62712/juktisi.v4i2.604Keywords:
Spatial Analysis, Land Use and Land Cover Change (LULCC), Geospatial Modeling, Remote Sensing, CA-Markov ModelAbstract
Land Change Science has increasingly relied on spatial analysis methods to monitor, understand, and predict land-use and land-cover change (LULCC). Over the past decade, technological advancements such as high-resolution satellite imagery, machine learning algorithms, and robust GIS platforms have significantly transformed how spatial patterns and environmental transformations are studied. However, there is a lack of a synthesized understanding of how these geospatial methodologies have evolved and been applied across different contexts and regions. This review aims to systematically examine the evolution and application of spatial analysis techniques in land change science, focusing on the tools, models, and analytical approaches used in geospatial studies over the past decade. A systematic literature review (SLR) was conducted using a dataset of 62 peer-reviewed research articles published between 2015 and 2025. The articles were analyzed based on key parameters, including geographic context, spatial analysis methods, software used (e.g., ArcGIS, ERDAS, Google Earth Engine), types of classification models (e.g., CA-Markov, Random Forest, SVM), and theoretical frameworks. The review also considered novelty, limitations, and future research directions highlighted by each study. The review found that CA-Markov modeling, supervised classification, and Random Forest are the most frequently applied spatial analysis techniques. A notable trend is integrating machine learning with remote sensing, particularly through platforms like Google Earth Engine. While ArcGIS remains dominant, open-source tools like QGIS and Python-based APIs are gaining traction. Data availability, spatial resolution, and lack of socio-economic integration often limit studies. Theoretical frameworks, such as Human–Environment Interaction Theory and urban ecological theory, were commonly employed to interpret the findings. Geospatial methodologies in land change science have advanced significantly, enabling more dynamic, scalable, and accurate assessments of environmental change. Future research should focus on integrating socio-economic variables, enhancing ground validation, and developing hybrid models that leverage AI and big data to achieve a more holistic understanding of land system science.
Downloads
References
K. D. O. Bhutia et al., “Exploring shifting patterns of land use and land cover dynamics in the Khangchendzonga Biosphere Reserve (1992–2032): a geospatial forecasting approach,” Environ. Monit. Assess., vol. 197, no. 3, p. 298, Feb. 2025, doi: 10.1007/s10661-025-13710-6.
P. K. Badapalli, A. B. Nakkala, S. Gugulothu, R. B. Kottala, and P. Mannala, “Geospatial insights into urban growth and land cover transformation in Anantapur city, India,” Environ. Dev. Sustain., no. 0123456789, Jul. 2024, doi: 10.1007/s10668-024-05180-6.
A. A. Dofee and P. Chand, “Spatiotemporal dynamics of land use land cover patterns in the middle Omo-Gibe River Basin, Ethiopia: machine learning, geospatial, and field survey integrated approach,” Model. Earth Syst. Environ., vol. 11, no. 1, p. 42, Feb. 2025, doi: 10.1007/s40808-024-02185-y.
J. Debnath et al., “Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management,” Environ. Sci. Pollut. Res., vol. 30, no. 49, pp. 106997–107020, Nov. 2022, doi: 10.1007/s11356-022-24248-2.
H. G. Singh and K. P. Singh, “Analysis of land use and land cover dynamics and drivers of urban expansion in and around Imphal city, India, using geospatial and random forest techniques,” GeoJournal, vol. 89, no. 4, p. 169, Aug. 2024, doi: 10.1007/s10708-024-11190-8.
P. Deb et al., “Analyzing land use land cover dynamics under rapid urbanization using multi-temporal satellite imageries and geospatial technology for Jamshedpur city in India,” Adv. Sp. Res., vol. 75, no. 3, pp. 2810–2825, Feb. 2025, doi: 10.1016/j.asr.2024.11.059.
C. S. Chanu, L. Elango, and G. R. Shankar, “A geospatial approach for assessing the relation between changing land use/land cover and environmental parameters including land surface temperature of Chennai metropolitan city, India,” Arab. J. Geosci., vol. 14, no. 2, p. 132, Jan. 2021, doi: 10.1007/s12517-020-06409-0.
M. Y. Jat Baloch et al., “Hydrogeochemical Mechanism Associated with Land Use Land Cover Indices Using Geospatial, Remote Sensing Techniques, and Health Risks Model,” Sustainability, vol. 14, no. 24, p. 16768, Dec. 2022, doi: 10.3390/su142416768.
R. Khan, B. Aribam, and W. Alam, “Estimation of impacts of land use and land cover (LULC) changes on land surface temperature (LST) within greater Imphal urban area using geospatial technique,” Acta Geophys., vol. 71, no. 6, pp. 2811–2823, Sep. 2023, doi: 10.1007/s11600-023-01159-5.
M. B. Moisa, I. N. Dejene, and D. O. Gemeda, “Integration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia,” Appl. Geomatics, vol. 14, no. 4, pp. 653–667, Dec. 2022, doi: 10.1007/s12518-022-00463-x.
X. Duan et al., “A geospatial and statistical analysis of land surface temperature in response to land use land cover changes and urban heat island dynamics,” Sci. Rep., vol. 15, no. 1, p. 4943, Feb. 2025, doi: 10.1038/s41598-025-89167-x.
M. B. Moisa, A. Babu, and K. Getahun, “Integration of geospatial technologies with RUSLE model for analysis of soil erosion in response to land use/land cover dynamics: a case of Jere watershed, Western Ethiopia,” Sustain. Water Resour. Manag., vol. 9, no. 1, p. 13, Feb. 2023, doi: 10.1007/s40899-022-00805-y.
M. B. Moisa, I. N. Dejene, B. B. Merga, and D. O. Gemeda, “Impacts of land use/land cover dynamics on land surface temperature using geospatial techniques in Anger River Sub-basin, Western Ethiopia,” Environ. Earth Sci., vol. 81, no. 3, p. 99, Feb. 2022, doi: 10.1007/s12665-022-10221-2.
R. Das Kangabam, M. Selvaraj, and M. Govindaraju, “Assessment of land use land cover changes in Loktak Lake in Indo-Burma Biodiversity Hotspot using geospatial techniques,” Egypt. J. Remote Sens. Sp. Sci., vol. 22, no. 2, pp. 137–143, 2019, doi: 10.1016/j.ejrs.2018.04.005.
T. K. Thakur et al., “Land use land cover change detection through geospatial analysis in an Indian Biosphere Reserve,” Trees, For. People, vol. 2, no. July, p. 100018, 2020, doi: 10.1016/j.tfp.2020.100018.
N. N. Dey, A. Al Rakib, A. Al Kafy, and V. Raikwar, “Geospatial modelling of changes in land use/land cover dynamics using Multi-layer perception Markov chain model in Rajshahi City, Bangladesh,” Environ. Challenges, vol. 4, no. May, p. 100148, 2021, doi: 10.1016/j.envc.2021.100148.
R. Wahdatyar et al., “Exploring the dynamics and future projections of land use land cover changes by exploiting geospatial techniques; A case study of the Kabul River Basin,” Heliyon, vol. 10, no. 20, p. e39020, Oct. 2024, doi: 10.1016/j.heliyon.2024.e39020.
S. Masalvad and V. Paliwal, “Assessing Seasonal Fluctuations in Forecast Precision through Comparative Regression Modelling in Meteorology,” Nov. 29, 2024, Springer. doi: 10.21203/rs.3.rs-5397718/v1.
G. Gitima, M. Teshome, M. Kassie, and M. Jakubus, “Spatiotemporal land use and cover changes across agroecologies and slope gradients using geospatial technologies in Zoa watershed, Southwest Ethiopia,” Heliyon, vol. 8, no. 9, p. e10696, Sep. 2022, doi: 10.1016/j.heliyon.2022.e10696.
A. Elaji and W. Ji, “Urban runoff simulation: How do land use/cover change patterning and geospatial data quality impact model outcome?,” Water (Switzerland), vol. 12, no. 10, pp. 1–19, 2020, doi: 10.3390/w12102715.
S. Kumar, V. Singh, and J. Saroha, “Interpretation of land use/land cover dynamics with the application of geospatial techniques in sarbari khad watershed of Himachal Pradesh, India,” GeoJournal, vol. 88, no. 3, pp. 2623–2633, Oct. 2022, doi: 10.1007/s10708-022-10769-3.
D. San Martin Saldias, L. G. Aguayo, L. Wallace, K. Reinke, and B. McLennan, “Perceptions of land use and land cover analysed using geospatial data,” Appl. Geogr., vol. 146, no. January, p. 102757, Sep. 2022, doi: 10.1016/j.apgeog.2022.102757.
M. W. Naikoo et al., “Analysis of peri-urban land use/land cover change and its drivers using geospatial techniques and geographically weighted regression,” Environ. Sci. Pollut. Res., vol. 30, no. 55, pp. 116421–116439, Jan. 2022, doi: 10.1007/s11356-022-18853-4.
C. Lelong and H. Herimandimby, “Land use / land cover map of Vavatenina region (Madagascar) produced by object-based analysis of very high spatial resolution satellite images and geospatial reference data.,” Data Br., vol. 44, p. 108517, Oct. 2022, doi: 10.1016/j.dib.2022.108517.
S. Kumar, “Geospatial applications in land use/land cover change detection for sustainable regional development: The case of central haryana, india,” Geomatics Environ. Eng., vol. 15, no. 3, pp. 81–98, 2021, doi: 10.7494/geom.2021.15.3.81.
F. Isufi and A. Berila, “Using geospatial technology to analyse land use/cover changes in Prishtina, Kosovo (2000–2020),” GeoJournal, vol. 87, no. 5, pp. 3639–3653, Oct. 2022, doi: 10.1007/s10708-021-10452-z.
A. Senamaw, T. Gashaw, and M. A. Ehsan, “Impacts of Land-Use/Land-Cover Changes on Water-Borne Soil Erosion Using Geospatial Technologies and RUSLE Model over Chimbel Watershed of Upper Blue Nile Basin in Ethiopia,” Earth Syst. Environ., vol. 6, no. 2, pp. 483–497, 2022, doi: 10.1007/s41748-021-00259-w.
D. M. Moges and H. G. Bhat, “Integration of geospatial technologies with RUSLE for analysis of land use/cover change impact on soil erosion: case study in Rib watershed, north-western highland Ethiopia,” Environ. Earth Sci., vol. 76, no. 22, pp. 1–14, 2017, doi: 10.1007/s12665-017-7109-4.
M. Asempah, W. Sahwan, and B. Schütt, “Assessment of land cover dynamics and drivers of urban expansion using geospatial and logistic regression approach in wa municipality, ghana,” Land, vol. 10, no. 11, 2021, doi: 10.3390/land10111251.
M. B. Moisa and D. O. Gemeda, “Analysis of urban expansion and land use/land cover changes using geospatial techniques: a case of Addis Ababa City, Ethiopia,” Appl. Geomatics, vol. 13, no. 4, pp. 853–861, Dec. 2021, doi: 10.1007/s12518-021-00397-w.
P. Ettehadi Osgouei, E. Sertel, and M. E. Kabadayı, “Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020,” Sci. Rep., vol. 12, no. 1, p. 9077, May 2022, doi: 10.1038/s41598-022-11396-1.
S. Zewdu, K. V. Suryabhagavan, and M. Balakrishnan, “Land-use/land-cover dynamics in Sego Irrigation Farm, southern Ethiopia: A comparison of temporal soil salinization using geospatial tools,” J. Saudi Soc. Agric. Sci., vol. 15, no. 1, pp. 91–97, Jan. 2016, doi: 10.1016/j.jssas.2014.03.003.
R. Vijay et al., “Assessment of tourism impact on land use/land cover and natural slope in Manali, India: a geospatial analysis,” Environ. Earth Sci., vol. 75, no. 1, p. 20, Jan. 2016, doi: 10.1007/s12665-015-4858-9.
L. Chu, T. Sun, T. Wang, Z. Li, and C. Cai, “Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA),” Sustainability, vol. 10, no. 11, p. 3854, Oct. 2018, doi: 10.3390/su10113854.
M. M. Aburas, Y. M. Ho, B. Pradhan, A. H. Salleh, and M. Y. D. Alazaiza, “Spatio-temporal simulation of future urban growth trends using an integrated CA-Markov model,” Arab. J. Geosci., vol. 14, no. 2, p. 131, Jan. 2021, doi: 10.1007/s12517-021-06487-8.
A. F. Koko, W. Yue, G. A. Abubakar, R. Hamed, and A. A. N. Alabsi, “Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov),” Sustainability, vol. 12, no. 24, p. 10452, Dec. 2020, doi: 10.3390/su122410452.
A. N. Dang and A. Kawasaki, “A Review of Methodological Integration in Land-Use Change Models,” Int. J. Agric. Environ. Inf. Syst., vol. 7, no. 2, pp. 1–25, Apr. 2016, doi: 10.4018/IJAEIS.2016040101.
M. Shabani, S. Darvishi, H. Rabiei-Dastjerdi, A. Alavi, T. Choudhury, and K. Solaimani, “An integrated approach for simulation and prediction of land use and land cover changes and urban growth (Case study: Sanandaj city in Iran),” J. Geogr. Inst. Jovan Cvijic, SASA, vol. 72, no. 3, pp. 273–289, 2022, doi: 10.2298/IJGI2203273S.
F. Yulianto, S. Suwarsono, and S. Sulma, “Improving the accuracy and reliability of land use/land cover simulation by the integration of Markov cellular automata and landform-based models __ a case study in the upstream Citarum watershed, West Java, Indonesia,” J. Degrad. Min. Lands Manag., vol. 06, no. 02, pp. 1675–1696, Jan. 2019, doi: 10.15243/jdmlm.2019.062.1675.
S. SHEN, “DYNAMIC SIMULATION OF URBAN GREEN SPACE EVOLUTION BASED ON CA-MARKOV MODEL-A CASE STUDY OF HEXI NEW TOWN OF NANJING CITY, CHINA,” Appl. Ecol. Environ. Res., vol. 17, no. 4, 2019, doi: 10.15666/aeer/1704_85698581.
V. I. Vasenev, A. M. Yaroslavtsev, I. I. Vasenev, S. A. Demina, and E. A. Dovltetyarova, “Land-Use Change in New Moscow: First Outcomes after Five Years of Urbanization,” Geogr. Environ. Sustain., vol. 12, no. 4, pp. 24–34, Dec. 2019, doi: 10.24057/2071-9388-2019-89.
Z. S. Venter, D. N. Barton, T. Chakraborty, T. Simensen, and G. Singh, “Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover,” Remote Sens., vol. 14, no. 16, p. 4101, Aug. 2022, doi: 10.3390/rs14164101.
M. Pesaresi, C. Corbane, A. Julea, A. Florczyk, V. Syrris, and P. Soille, “Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas,” Remote Sens., vol. 8, no. 4, p. 299, Apr. 2016, doi: 10.3390/rs8040299.
Y. Zhou et al., “Are There Sufficient Landsat Observations for Retrospective and Continuous Monitoring of Land Cover Changes in China?,” Remote Sens., vol. 11, no. 15, p. 1808, Aug. 2019, doi: 10.3390/rs11151808.
A. Midekisa et al., “Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing,” PLoS One, vol. 12, no. 9, p. e0184926, Sep. 2017, doi: 10.1371/journal.pone.0184926.
D. Nguyen Dinh, “AUTOMATED CLASSIFICATION OF LAND COVER USING LANDSAT 8 OLI SURFACE REFLECTANCE PRODUCT AND SPECTRAL PATTERN ANALYSIS CONCEPT - CASE STUDY IN HANOI, VIETNAM,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLI-B8, pp. 987–991, Jun. 2016, doi: 10.5194/isprsarchives-XLI-B8-987-2016.
D. Kumar, “MONITORING AND ASSESSMENT OF LAND USE AND LAND COVER CHANGES (1977 - 2010) IN KAMRUP DISTRICT OF ASSAM, INDIA USING REMOTE SENSING AND GIS TECHNIQUES,” Appl. Ecol. Environ. Res., vol. 15, no. 3, pp. 221–239, 2017, doi: 10.15666/aeer/1503_221239.
S. A. Pohan and N. Sulistiyono, “Analysis of the relationship between urban heat island (UHI) phenomenon and land cover change in Medan city using Landsat satellite imagery,” J. Phys. Conf. Ser., vol. 2421, no. 1, p. 012017, Jan. 2023, doi: 10.1088/1742-6596/2421/1/012017.
J. Ren, R. Wang, G. Liu, Y. Wang, and W. Wu, “An SVM-Based Nested Sliding Window Approach for Spectral–Spatial Classification of Hyperspectral Images,” Remote Sens., vol. 13, no. 1, p. 114, Dec. 2020, doi: 10.3390/rs13010114.
C. Zhang et al., “An object-based convolutional neural network (OCNN) for urban land use classification,” Remote Sens. Environ., vol. 216, pp. 57–70, Oct. 2018, doi: 10.1016/j.rse.2018.06.034.
H. Yu, L. Gao, J. Li, S. Li, B. Zhang, and J. Benediktsson, “Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields,” Remote Sens., vol. 8, no. 4, p. 355, Apr. 2016, doi: 10.3390/rs8040355.
A. Tzepkenlis, K. Marthoglou, and N. Grammalidis, “Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery,” Remote Sens., vol. 15, no. 8, p. 2027, Apr. 2023, doi: 10.3390/rs15082027.
J. Wang, T. Dong, Y. Cheng, and W. Yan, “Machine Learning Assisted Spraying Pattern Recognition for Electrohydrodynamic Atomization System,” Ind. Eng. Chem. Res., vol. 61, no. 24, pp. 8495–8503, Jun. 2022, doi: 10.1021/acs.iecr.1c04669.
N. Mboga, C. Persello, J. Bergado, and A. Stein, “Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks,” Remote Sens., vol. 9, no. 11, p. 1106, Oct. 2017, doi: 10.3390/rs9111106.
M. Volpi and D. Tuia, “Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 881–893, Feb. 2017, doi: 10.1109/TGRS.2016.2616585.
V. L. Packard, “The International Encyclopedia of Geography: People, the Earth, Environment and Technology,” Ref. Rev., vol. 32, no. 1, pp. 31–32, Jan. 2018, doi: 10.1108/RR-07-2017-0174.
K. Huang, “RS and GIS based LULC change and water quality monitoring,” Highlights Sci. Eng. Technol., vol. 25, pp. 54–63, Dec. 2022, doi: 10.54097/hset.v25i.3418.
N. S. Sumari, Z. Shao, M. Huang, C. A. Sanga, and J. L. Van Genderen, “URBAN EXPANSION: A GEO-SPATIAL APPROACH FOR TEMPORAL MONITORING OF LOSS OF AGRICULTURAL LAND,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-2/W7, pp. 1349–1355, Sep. 2017, doi: 10.5194/isprs-archives-XLII-2-W7-1349-2017.
S. Dixit et al., “Establishing a Demographic, Development and Environmental Geospatial Surveillance Platform in India: Planning and Implementation,” JMIR Public Heal. Surveill., vol. 4, no. 4, p. e66, Oct. 2018, doi: 10.2196/publichealth.9749.
S. S. Rwanga and J. M. Ndambuki, “Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS,” Int. J. Geosci., vol. 08, no. 04, pp. 611–622, 2017, doi: 10.4236/ijg.2017.84033.
P. H. Verburg et al., “Land system science and sustainable development of the earth system: A global land project perspective,” Anthropocene, vol. 12, pp. 29–41, Dec. 2015, doi: 10.1016/j.ancene.2015.09.004.
H. Gosnell, R. Kennedy, T. Harris, and J. Abrams, “A land systems science approach to assessing forest governance and characterizing the emergence of social forestry in the Western Cascades of Oregon,” Environ. Res. Lett., vol. 15, no. 5, p. 055003, May 2020, doi: 10.1088/1748-9326/ab666b.
K. M. Woods, P. Wang, J. O. Sexton, P. Leimgruber, J. Wong, and Q. Huang, “Integrating Pixels, People, and Political Economy to Understand the Role of Armed Conflict and Geopolitics in Driving Deforestation: The Case of Myanmar,” Remote Sens., vol. 13, no. 22, p. 4589, Nov. 2021, doi: 10.3390/rs13224589.
A. V. Di Vittorio, J. Mao, X. Shi, L. Chini, G. Hurtt, and W. D. Collins, “Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates,” Geophys. Res. Lett., vol. 45, no. 2, pp. 974–982, Jan. 2018, doi: 10.1002/2017GL075124.
E. Jaque Castillo, C. G. Ojeda, and R. Fuentes Robles, “Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016),” Land, vol. 11, no. 11, p. 1992, Nov. 2022, doi: 10.3390/land11111992.
Y. Wang, X. Gu, and H. Yu, “Spatiotemporal Variation in the Yangtze River Delta Urban Agglomeration from 1980 to 2020 and Future Trends in Ecosystem Services,” Land, vol. 12, no. 4, p. 929, Apr. 2023, doi: 10.3390/land12040929.
D. MUMCU KÜÇÜKER and B. SARI, “Determining the Spatio-Temporal Dynamics of Land Cover along with Some Socio-Economic Factors in the Olur Planning Unit (Turkey),” Bartın Orman Fakültesi Derg., vol. 23, no. 3, pp. 926–940, Dec. 2021, doi: 10.24011/barofd.972438.
R. Nedd, K. Light, M. Owens, N. James, E. Johnson, and A. Anandhi, “A Synthesis of Land Use/Land Cover Studies: Definitions, Classification Systems, Meta-Studies, Challenges and Knowledge Gaps on a Global Landscape,” Land, vol. 10, no. 9, p. 994, Sep. 2021, doi: 10.3390/land10090994.
F. Jäger, J. Schwaab, M. Bukenberger, S. J. De Hertog, and S. I. Seneviratne, “Spectral Decomposition and Signal Separation of Climate Responses to Land Cover Changes,” J. Geophys. Res. Atmos., vol. 130, no. 5, Mar. 2025, doi: 10.1029/2024JD042698.
M. Luo, F. Li, D. Hao, Q. Zhu, H. Dashti, and M. Chen, “Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America,” Earth’s Futur., vol. 11, no. 10, Oct. 2023, doi: 10.1029/2023EF003648.
N. Joshi et al., “A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring,” Remote Sens., vol. 8, no. 1, p. 70, Jan. 2016, doi: 10.3390/rs8010070.
Y.-T. Lu, P. Wu, X. Ma, and X. Li, “Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model,” Environ. Monit. Assess., vol. 191, no. 2, p. 68, Feb. 2019, doi: 10.1007/s10661-019-7200-2.
P. Papilaya, I. N. S. JAYA, T. RUSOLONO, and N. PUSPANINGSIH, “Land change-based forest management scenario in the typology of island clusters in Maluku Province, Indonesia,” Biodiversitas J. Biol. Divers., vol. 22, no. 9, Aug. 2021, doi: 10.13057/biodiv/d220920.
X. Xie and Q. Zhu, “Research on the Impact of Urban Expansion on Habitat Quality in Chengdu,” Sustainability, vol. 15, no. 7, p. 6271, Apr. 2023, doi: 10.3390/su15076271.
S. Wang et al., “Analysis of Land Use/Cover Changes and Driving Forces in a Typical Subtropical Region of South Africa,” Remote Sens., vol. 15, no. 19, p. 4823, Oct. 2023, doi: 10.3390/rs15194823.
C. G. Tornquist and D. S. da Silva, “Current and future land use and land cover scenarios in the Arroio Marrecas watershed,” Rev. Bras. Eng. Agrícola e Ambient., vol. 23, no. 3, pp. 215–222, Mar. 2019, doi: 10.1590/1807-1929/agriambi.v23n3p215-222.
S. Wang, J. Fan, H. Zhang, Y. Zhang, and H. Fang, “Harmonizing Population, Grain, and Land: Unlocking Sustainable Land Resource Management in the Farming–Pastoral Ecotone,” Land, vol. 12, no. 7, p. 1311, Jun. 2023, doi: 10.3390/land12071311.
L. Cheng, H. Sun, Y. Zhang, and S. Zhen, “Spatial structure optimization of mountainous abandoned mine land reuse based on system dynamics model and CLUE-S model,” Int. J. Coal Sci. Technol., vol. 6, no. 1, pp. 113–126, Mar. 2019, doi: 10.1007/s40789-019-0241-x.
D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” BMJ, vol. 339, no. jul21 1, pp. b2535–b2535, Jul. 2009, doi: 10.1136/bmj.b2535.
E. M. Lasda Bergman, “Finding Citations to Social Work Literature: The Relative Benefits of Using Web of Science, Scopus, or Google Scholar,” J. Acad. Librariansh., vol. 38, no. 6, pp. 370–379, Nov. 2012, doi: 10.1016/j.acalib.2012.08.002.
R. Rocha et al., “Bat conservation and zoonotic disease risk: a research agenda to prevent misguided persecution in the aftermath of COVID‐19,” Anim. Conserv., vol. 24, no. 3, pp. 303–307, Jun. 2021, doi: 10.1111/acv.12636.
E. Hariningsih, B. Haryanto, L. Wahyudi, and C. Sugiarto, “Ten years of evolving traditional versus non-traditional celebrity endorser study: review and synthesis,” Manag. Rev. Q., pp. 1–61, Apr. 2024, doi: 10.1007/s11301-024-00425-0.
N. Panic, E. Leoncini, G. de Belvis, W. Ricciardi, and S. Boccia, “Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses,” PLoS One, vol. 8, no. 12, p. e83138, Dec. 2013, doi: 10.1371/journal.pone.0083138.
A. P. Siddaway, A. M. Wood, and L. V Hedges, “How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses,” Annu. Rev. Psychol., vol. 70, no. 1, pp. 747–770, Jan. 2019, doi: 10.1146/annurev-psych-010418-102803.
A. Musa, S. Saleh, K. Mohammed, Y. H. Labaran, J. Yau, and H. Mato, “Evaluation of Potential Use of Charcoal as a Filter Material In Water Treatment,” vol. 07, pp. 1930–1939, May 2020.
Y. Yin, R. Zhang, S. Li, J. Guo, Z. Hou, and Y. Zhang, “Negative-pressure therapy versus conventional therapy on split-thickness skin graft: A systematic review and meta-analysis,” Int. J. Surg., vol. 50, pp. 43–48, Feb. 2018, doi: 10.1016/j.ijsu.2017.12.020.
P. K. Mishra, A. Rai, and S. C. Rai, “Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India,” Egypt. J. Remote Sens. Sp. Sci., vol. 23, no. 2, pp. 133–143, 2020, doi: 10.1016/j.ejrs.2019.02.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Supiyandi Supiyandi, Ramlah binti Mailok

This work is licensed under a Creative Commons Attribution 4.0 International License.
Supiyandi Supiyandi




