Systematic Literature Review: Evolusi Ancaman Siber Dan Metode Deteksi Malware Di Sistem Operasi Android (2020–2025)

Penulis

  • Nuansa Bening Aura Jelita Universitas Pendidikan Indonesia
  • Herbert Siregar Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.62712/juktisi.v4i1.395

Kata Kunci:

Mobile Operating System, Malware Detection, Android Malware, Systematic Literature Review, PRISMA

Abstrak

Android sebagai sistem operasi mobile dominan menghadapi ancaman siber kompleks seperti logic bombs, repackaging attack, banking trojans, dan botnet. Metode deteksi berbasis Machine Learning (ML) dan Deep Learning (DL), seperti Covalent Bond Strength Score (akurasi 97,5%) dan Zero Trust Architecture (ZTA) untuk deteksi proaktif TTP, menunjukkan hasil yang menjanjikan. Analisis graph-based seperti Triadic Suspicion Graph (TSG) mencapai akurasi 99,9% dalam mendeteksi banking trojans, sementara metode hybrid berbasis NLP dan virtualisasi ARM-based membantu mengatasi eksploitasi runtime dan teknik penghindaran. Tantangan utama meliputi keterbatasan dataset malware dan serangan adversarial terhadap model AI. Studi ini menggunakan Systematic Literature Review (SLR) dengan pedoman PRISMA untuk memberikan gambaran komprehensif perkembangan deteksi malware Android. Temuan diharapkan mendukung pengembangan sistem keamanan yang lebih efektif dan adaptif.

Unduhan

Data unduhan belum tersedia.

Referensi

A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts 10th edition. Wiley, 2018. [Online]. Available: http://os-book.com/OS10/index.html

A. Mos and M. M. Chowdhury, “Mobile security: A look into android,” in IEEE International Conference on Electro Information Technology, 2020, pp. 638–642. doi: 10.1109/EIT48999.2020.9208339.

M. Alecci, J. Samhi, L. Li, T. F. Bissyande, and J. Klein, “Improving logic bomb identification in android apps via context-aware anomaly detection,” IEEE Trans. Dependable Secur. Comput., vol. 21, no. 5, pp. 4735 – 4753, 2024, doi: 10.1109/TDSC.2024.3358979.

H. Ma, S. Li, D. Gao, D. Wu, Q. Jia, and C. Jia, “Active warden attack: On the (in)effectiveness of android app repackage-proofing,” IEEE Trans. Dependable Secur. Comput., vol. 19, no. 5, pp. 3508–3520, 2022, doi: 10.1109/TDSC.2021.3100877.

N. Zhang, J. Xue, Y. Ma, R. Zhang, T. Liang, and Y. an Tan, “Hybrid sequence-based android malware detection using natural language processing,” Int. J. Intell. Syst., vol. 36, no. 10, pp. 5770–5784, 2021, doi: 10.1002/int.22529.

H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song, “SEDMDroid: An enhanced stacking ensemble framework for android malware detection,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 984–994, 2021, doi: 10.1109/TNSE.2020.2996379.

S. Seraj, E. Pimenidis, M. Trovati, and N. Polatidis, “Zero-day android botnet detection using neural networks,” Neural Comput. Appl., 2024, doi: 10.1007/s00521-024-10818-7.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of android malware detection approaches based on machine learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020, doi: 10.1109/ACCESS.2020.3006143.

A. Nazir, Z. Iqbal, and Z. Muhammad, “ZTA: A novel zero trust framework for detection and prevention of malicious android applications,” Wirel. Networks, vol. 31, no. 4, pp. 3187 – 3203, 2024, doi: 10.1007/s11276-025-03935-1.

S. Seneviratne, R. Shariffdeen, S. Rasnayaka, and N. Kasthuriarachchi, “Self-supervised vision transformers for malware detection,” IEEE Access, vol. 10, pp. 103121–103135, 2022, doi: 10.1109/ACCESS.2022.3206445.

C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. S. Subrahmanian, “DBank: Predictive behavioral analysis of recent android banking trojans,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 3, pp. 1378–1393, 2021, doi: 10.1109/TDSC.2019.2909902.

R. Gupta, K. Sharma, and R. K. Garg, “Covalent bond based android malware detection using permission and system call pairs,” Comput. Mater. Contin., vol. 78, no. 3, pp. 4283–4301, 2024, doi: 10.32604/cmc.2024.046890.

J. Park, N. T. Chau, L. Nguyen-Vu, J. Yoon, and S. Jung, “A-pot: A comprehensive android analysis platform based on container technology,” IEEE Access, vol. 8, pp. 199638–199645, 2020, doi: 10.1109/ACCESS.2020.3035774.

L. N. Vu and S. Jung, “Admat: A cnn-on-matrix approach to android malware detection and classification,” IEEE Access, vol. 9, pp. 39680–39694, 2021, doi: 10.1109/ACCESS.2021.3063748.

N. Zakeya, K. Ségla, T. Chamseddine, and B. B. Alvine, “Probing androvul dataset for studies on Android malware classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 6883–6894, 2022, doi: 10.1016/j.jksuci.2021.08.033.

Diterbitkan

2025-06-23

Cara Mengutip

Aura Jelita, N. B., & Siregar, H. (2025). Systematic Literature Review: Evolusi Ancaman Siber Dan Metode Deteksi Malware Di Sistem Operasi Android (2020–2025) . Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(1), 227–235. https://doi.org/10.62712/juktisi.v4i1.395

Terbitan

Bagian

Articles