BERT Sentimen: Fine-Tuning Multibahasa untuk Ulasan Bahasa Indonesia
DOI:
https://doi.org/10.62712/juktisi.v4i2.585Kata Kunci:
mBERT, Analisis Sentimen, Augmentasi data, Fine-tuning, Precision‑recall trade‑offAbstrak
Penelitian ini mengevaluasi pengaruh teknik augmentasi dan fine‑tuning terhadap kinerja model BERT multibahasa pada tugas klasifikasi sentimen ulasan film berbahasa Indonesia. Dataset awal terdiri dari 1.200 ulasan; 80% digunakan untuk pelatihan dan validasi (n = 960) dan 20% untuk pengujian (n = 240). Data pelatihan diperluas melalui augmentasi menjadi 2.880 sampel sintetis untuk keperluan fine‑tuning. Model kemudian di‑fine‑tune pada korpus yang diperluas dan dievaluasi menggunakan metrik akurasi, precision, recall, dan F1. Pada set pengujian diperoleh akurasi 82,5%, precision untuk kelas positif 76,0%, recall 95,0%, dan F1‑score 84,44%. Matriks kebingungan menunjukkan TP = 114, FN = 6, FP = 36, dan TN = 84, yang mengindikasikan sensitivitas tinggi terhadap ulasan positif namun terdapat proporsi false positive yang relatif besar. Temuan ini mengindikasikan bahwa augmentasi meningkatkan kemampuan model dalam menangkap sinyal positif (tingginya recall), namun memerlukan penyesuaian lebih lanjut untuk mengurangi kesalahan prediksi positif (meningkatkan precision). Secara keseluruhan, hasil penelitian menyediakan bukti bahwa BERT multibahasa mampu menangani tugas sentimen berbahasa Indonesia dengan performa memadai apabila didukung strategi augmentasi dan prosedur validasi yang tepat.Unduhan
Referensi
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” May 2019, [Online]. Available: http://arxiv.org/abs/1810.04805
E. W. Pamungkas and D. G. P. Putri, “An experimental study of lexicon-based sentiment analysis on Bahasa Indonesia,” in 2016 6th International Annual Engineering Seminar (InAES), IEEE, Aug. 2016, pp. 28–31. doi: 10.1109/INAES.2016.7821901.
A. Conneau et al., “Unsupervised Cross-lingual Representation Learning at Scale,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 8440–8451. doi: 10.18653/v1/2020.acl-main.747.
M. Y. Rizky and Y. Stellarosa, “Preferensi Penonton Terhadap Film Indonesia,” Communicare : Journal of Communication Studies, vol. 4, no. 1, p. 15, Jan. 2019, doi: 10.37535/101004120172.
C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to Fine-Tune BERT for Text Classification?,” Feb. 2020, [Online]. Available: http://arxiv.org/abs/1905.05583
M. Bucos and G. Țucudean, “Text Data Augmentation Techniques for Fake News Detection in the Romanian Language,” Applied Sciences, vol. 13, no. 13, p. 7389, Jun. 2023, doi: 10.3390/app13137389.
D. Nuryadi et al., “FINE TUNING INDOBERT UNTUK ANALISIS SENTIMEN PADA ULASAN PENGGUNA APLIKASI TIKET.COM DI GOOGLE PLAY STORE,” 2025.
T. Pires, E. Schlinger, and D. Garrette, “How multilingual is Multilingual BERT?,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.01502
Y. Zhang, R. Jin, and Z. H. Zhou, “Understanding bag-of-words model: A statistical framework,” International Journal of Machine Learning and Cybernetics, vol. 1, no. 1–4, pp. 43–52, Dec. 2010, doi: 10.1007/s13042-010-0001-0.
K. Dedes, A. B. Putra Utama, A. P. Wibawa, A. N. Afandi, A. N. Handayani, and L. Hernandez, “Neural Machine Translation of Spanish-English Food Recipes Using LSTM,” JOIV : International Journal on Informatics Visualization, vol. 6, no. 2, p. 290, Jun. 2022, doi: 10.30630/joiv.6.2.804.
J. J. Webster and C. Kit, “Tokenization as the initial phase in NLP,” in Proceedings of the 14th conference on Computational linguistics -, Morristown, NJ, USA: Association for Computational Linguistics, 1992, p. 1106. doi: 10.3115/992424.992434.
C. Zhou, B. Li, H. Fei, F. Li, C. Teng, and D. Ji, “Revisiting Structured Sentiment Analysis as Latent Dependency Graph Parsing.” [Online]. Available: https://github.
J. Wei and K. Zou, “EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Stroudsburg, PA, USA: Association for Computational Linguistics, 2019, pp. 6381–6387. doi: 10.18653/v1/D19-1670.
M. Fadaee, A. Bisazza, and C. Monz, “Data Augmentation for Low-Resource Neural Machine Translation,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Stroudsburg, PA, USA: Association for Computational Linguistics, 2017, pp. 567–573. doi: 10.18653/v1/P17-2090.
F. Panjaitan, W. Ce, H. Oktafiandi, G. Kanugrahan, Y. Ramdhani, and V. H. C. Putra, “Evaluation of Machine Learning Models for Sentiment Analysis in the South Sumatra Governor Election Using Data Balancing Techniques,” Journal of Information Systems and Informatics, vol. 7, no. 1, pp. 461–478, Mar. 2025, doi: 10.51519/journalisi.v7i1.1019.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Khen Dedes, Fatimatuzzahra, Mas'ud Hermansyah, Akas Bagus Setiawan, Reza Putra Pradana, Annisa Fitri Maghfiroh Harvyanti

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Khen Dedes




