Analisis Spasial dan Temporal Perubahan Luas Gletser Puncak Jaya Menggunakan Citra Sentinel-2 untuk Prediksi Kepunahan Gletser
DOI:
https://doi.org/10.62712/juktisi.v4i2.429Keywords:
Gletser Tropis, Puncak Jaya, NDSI, Regresi Linear, Regresi EksponensialAbstract
Perubahan iklim global menyebabkan penyusutan gletser tropis yang signifikan, menjadikan Puncak Jaya, gunung tertinggi di Oseania, sebagai indikator kritis. Penelitian ini bertujuan menganalisis perubahan luas Gletser Puncak Jaya dari tahun 2017 hingga 2024 menggunakan citra Sentinel-2 dan Normalized Difference Snow Index (NDSI), serta memproyeksikan waktu kepunahannya. Metodologi melibatkan akuisisi citra Sentinel-2 dengan minimal tutupan awan, perhitungan NDSI untuk delineasi luas gletser, dan prediksi menggunakan model regresi linier serta eksponensial. Hasil menunjukkan penyusutan luas gletser yang drastis dan konsisten, kehilangan sekitar 69.5% dari luas awalnya (47.67 hektar pada 2017 menjadi 14.51 hektar pada 2024). Gletser utara mengalami fragmentasi, sementara gletser selatan hampir menghilang. Penurunan pesat tercatat pada periode 2018-2019 (terkait El Niño) dan 2021-2022 (terkait La Niña yang kompleks). Prediksi regresi linier (skenario pesimis) menunjukkan kepunahan pada 22 April 2026. Sementara itu, regresi eksponensial (skenario optimis, luas <1 hektar) memprediksi kepunahan pada 6 Oktober 2044. Rentang waktu ini menggarisbawahi keniscayaan kepunahan gletser Puncak Jaya dalam beberapa dekade mendatang, menekankan urgensi mitigasi perubahan iklim.
Downloads
References
C. Gardner, "The impact of climate change on glacier retreat," J. Phys. Sci., vol. 5, no. 1, pp. 39–50, 2023.
A. Krtalić, A. K. Divjak, and K. Z. Šteković, "Remote sensing-based temporal analysis of Aletsch Glacier retreat (1990-2020)," in Proc. 11th Int. Conf. Geogr. Inf. Syst. Theory, Appl. Manage. (GISTAM 2025), 2025, pp. 253–263. [Online]. Available: https://doi.org/10.5220/0013481100003935
W. Du et al., "Glacier retreat leads to the expansion of alpine Lake Karakul observed via remote sensing water volume time series reconstruction," Atmosphere, vol. 14, no. 12, p. 1772, 2023. [Online]. Available: https://doi.org/10.3390/atmos14121772
F. Zhao, W. Gong, S. Bianchini, and Z. Yang, "Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing," The Cryosphere, vol. 18, no. 12, pp. 5595–5612, 2024. [Online]. Available: https://doi.org/10.5194/tc-18-5595-2024
Y. Xiao et al., "Glacier retreating analysis on the Southeastern Tibetan Plateau via multisource remote sensing data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 2035–2049, 2023. [Online]. Available: https://doi.org/10.1109/JSTARS.2023.3243771
S. Hauser and A. Schmitt, "Glacier retreat in Iceland mapped from space: Time series analysis of geodata from 1941 to 2018," PFG, vol. 89, no. 2, pp. 273–291, 2021. [Online]. Available: https://doi.org/10.1007/s41064-021-00139-y
I. Rashid, U. Majeed, N. A. Najar, and I. A. Bhat, "Retreat of Machoi Glacier, Kashmir Himalaya between 1972 and 2019 using remote sensing methods and field observations," Sci. Total Environ., vol. 785, p. 147376, 2021. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2021.147376
M. Imran and U. Ahmad, "Geospatially analysing the dynamics of the Khurdopin Glacier surge using multispectral and temporal remote sensing and ground observations," Nat. Hazards, 2021. [Online]. Available: https://doi.org/10.1007/s11069-021-04708-7
S. Zhou et al., "Remote sensing monitoring of advancing and surging glaciers in the Tien Shan, 1990–2019," Remote Sens., vol. 13, no. 10, p. 1973, 2021. [Online]. Available: https://doi.org/10.3390/rs13101973
H. Wytiahlowsky, C. R. Stokes, and D. J. A. Evans, "Remote sensing of glacier change (1965–2021) and identification of surge-type glaciers on Severnaya Zemlya, Russian High Arctic," J. Glaciol., vol. 69, no. 278, pp. 1764–1784, 2023. [Online]. Available: https://doi.org/10.1017/jog.2023.60
B. Abubakari and S. Ambinakudige, "The status of glaciers in the Western United States based on Sentinel-2A images," Remote Sens., vol. 16, no. 23, p. 4501, 2024. [Online]. Available: https://doi.org/10.3390/rs16234501
C. S. Carrión et al., "Multi-temporal analysis of the glacier retreat using Landsat satellite images in the Nevado of the Ampay National Sanctuary-Peru," J. Sustain. Dev. Energy Water Environ. Syst., vol. 1080380, 2017. [Online]. Available: https://doi.org/10.13044/j.sdewes.d8.0380
Q. Meng et al., "Monitoring glacier terminus and surface velocity changes over different time scales using massive imagery analysis and offset tracking at the Hoh Xil World Heritage Site, Qinghai-Tibet Plateau," Int. J. Appl. Earth Observ. Geoinformation, vol. 112, p. 102913, 2022. [Online]. Available: https://doi.org/10.1016/j.jag.2022.102913
A. Wufu et al., "Changes in glacial meltwater runoff and its response to climate change in the Tianshan Region detected using unmanned aerial vehicles (UAVs) and satellite remote sensing," Water, vol. 13, no. 17, p. 1753, 2021. [Online]. Available: https://doi.org/10.3390/w13131753
Y. Li et al., "Glacier retreat in Eastern Himalaya drives catastrophic glacier hazard chain," Geophys. Res. Lett., vol. 51, no. 9, p. e2024GL108202, 2024. [Online]. Available: https://doi.org/10.1029/2024GL108202
Copernicus Data Space Ecosystem. (2017-2024). Copernicus Data Space Ecosystem. Diakses dari https://dataspace.copernicus.eu/zz
Gascoin, S., Gouttevin, I., Nesti, J., & Dumont, M. (2020). Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. MDPI. https://www.mdpi.com/2072-4292/12/18/2904
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Zaidan Nafis, Amira Khairunissa, Muhammad Rizky Perdana, Eka Djunarsjah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Muhammad Zaidan Nafis




