Integrasi YOLOv11 dan Intersection-Based Method Untuk Estimasi Karakteristik Parkir Berdasarkan Parking Lot Surveillance Video

Authors

  • Muhammad Kamal Robbani Universitas Pendidikan Indonesia
  • Yudi Wibisono Universitas Pendidikan Indonesia
  • Eddy Prasetyo Nugroho Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.62712/juktisi.v4i2.502

Keywords:

YOLOv11, Computer Vision, Object Detection, Classification, Parking Management

Abstract

The rapid growth of vehicles without a corresponding increase in parking space availability has led to various issues such as traffic congestion, fuel waste, and excessive emissions. This study develops a computer vision-based parking analysis system using the YOLOv11 model to automatically detect vehicles in parking areas. The system integrates an intersection-based method and the BoT-SORT object tracking algorithm to classify parking spot availability. The classification results are then used to extract parking characteristic data. Video data were obtained from a publicly accessible livestream on YouTube in Kusatsu, Japan, and used for training and evaluating the model. The model achieved an mAP@50-95 of 0.926 under bright lighting conditions and 0.859 in low-light conditions. Additionally, estimation accuracy was evaluated using MAE and R² metrics, showing promising results, with MAE of 1.27 and R² of 0.989 during daytime, and MAE of 0.91 and R² of 0.91 at night.

Downloads

Download data is not yet available.

Author Biographies

Yudi Wibisono, Universitas Pendidikan Indonesia

Computer Science lecturer at UPI

Eddy Prasetyo Nugroho, Universitas Pendidikan Indonesia

Computer Science lecturer at UPI.

References

A. Ahdiat, “Ini Pertumbuhan Jumlah Mobil di Indonesia 10 Tahun Terakhir,” Databoks - Katadata. Accessed: Jul. 12, 2025. [Online]. Available: https://databoks.katadata.co.id/transportasi-logistik/sta tistik/f266a30f3f686f1/ini-pertumbuhan-jumlah-mobil-di-indonesia-10-tahun-terakhir

M. R. Arfianto, “Analisis Desain User Interface pada Aplikasi Pencari Parkir Mobil,” Desainpedia J. Urban Des. Lifestyle Behav., vol. 1, no. 1, 2022, doi: 10.36262/dpj.v1i1.589.

Z. Zhao and Y. Zhang, “A Comparative Study of Parking Occupancy Prediction Methods considering Parking Type and Parking Scale,” J. Adv. Transp., vol. 2020, 2020, doi: 10.1155/2020/5624586.

D. A. Yulmida, S. W. Mudjanarko, M. I. Setiawan, and A. D. Limantara, “Analisis Kinerja Parkir Sepanjang Jalan Walikota Mustajab Surabaya,” UKaRsT, vol. 1, no. 1, p. 11, 2018, doi: 10.30737/ukarst.v1i1.81.

B. Benjdira, A. Koubaa, W. Boulila, and A. Ammar, “Parking Analytics Framework using Deep Learning,” in Proceedings - 2022 2nd International Conference of Smart Systems and Emerging Technologies, SMARTTECH 2022, 2022. doi: 10.1109/SMARTTECH54121.2022.00051.

N. Jegham, C. Y. Koh, M. Abdelatti, and A. Hendawi, “YOLO Evolution: A Comprehensive Benchmark and Architectural Review of YOLOv12, YOLO11, and Their Previous Versions,” 2025, [Online]. Available: http://arxiv.org/abs/2411.00201

F. Galbusera and A. Cina, “Image annotation and curation in radiology: an overview for machine learning practitioners,” 2024. doi: 10.1186/s41747-023-00408-y.

Ultralytics, “Data Preprocessing Techniques for Annotated Computer Vision Data,” Ultralytics. Accessed: Jul. 15, 2025. [Online]. Available: https://docs.ultralytics.com/guides/preprocessing_annotated_data/

Ultralytics, “Ultralytics YOLO Hyperparameter Tuning Guide,” Ultralytics. Accessed: Jul. 15, 2025. [Online]. Available: https://docs.ultralytics.com/guides/hyperparameter-tuning/

F. Fritsch, “Deep Neural Networks for Object Detection in Satellite Imagery,” 2023.

A. Martynova et al., “Revising deep learning methods in parking lot occupancy detection,” pp. 1–22, 2023, [Online]. Available: http://arxiv.org/abs/2306.04288

N. Aharon, R. Orfaig, and B.-Z. Bobrovsky, “BoT-SORT: Robust Associations Multi-Pedestrian Tracking,” no. 2, 2022, [Online]. Available: http://arxiv.org/abs/2206.14651

A. Ultsch and J. Lötsch, “Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans),” BMC Bioinformatics, vol. 23, no. 1, 2022, doi: 10.1186/s12859-022-04769-w.

G. Nurinda Abdi and A. Nur Jannah, “EVALUASI KARAKTERISTIK DAN KEBUTUHAN RUANG PARKIR SEPEDA MOTOR (STUDI KASUS PT TIRTA INVESTAMA WONOSOBO),” Teknisia, vol. 27, no. 1, 2022, doi: 10.20885/teknisia.vol27.iss1.art6.

G. Pramono, N. M. Rangkuti, and M. Lubis, “Analisa Durasi dan Kapasitas Parkir Manhattan Times Square,” J. Civ. Eng. Build. Transp., vol. 3, no. 1, 2019, doi: 10.31289/jcebt.v3i1.2457.

J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C. H. Lee, “On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression,” IEEE Signal Process. Lett., vol. 27, 2020, doi: 10.1109/LSP.2020.3016837.

H. Pham, “A new criterion for model selection,” Mathematics, vol. 7, no. 12, 2019, doi: 10.3390/MATH7121215.

Downloads

Published

2025-08-04

How to Cite

Muhammad Kamal Robbani, Yudi Wibisono, & Eddy Prasetyo Nugroho. (2025). Integrasi YOLOv11 dan Intersection-Based Method Untuk Estimasi Karakteristik Parkir Berdasarkan Parking Lot Surveillance Video. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(2), 794–803. https://doi.org/10.62712/juktisi.v4i2.502