Predictive Classification Model dalam Tahapan Framework NIJ untuk Otomatisasi Investigasi Digital Forensik (Studi Kasus: Cyberbullying)

Authors

  • Khana Yusdiana Universitas Pendidikan Indonesia
  • Rizky Rahman J.P Universitas Pendidikan Indonesia
  • Eddy Prasetyo Nugroho Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.62712/juktisi.v4i2.521

Abstract

This study aims to apply the National Institute of Justice  framework in the digital forensic process for conversations retrieved from LINE and Telegram applications, as well as to explore the utilization of a Predictive Classification Model  for automated text-based comment classification in cyberbullying cases. Cyberbullying is a growing form of digital crime, particularly on private and encrypted instant messaging platforms that are difficult to monitor. The research employs two machine learning algorithms within the PCM framework Complement Naive Bayes and Random Forest to detect potentially abusive comments. The forensic process follows several stages: Preparation, Evidence Assessment, Evidence Acquisition, Evidence Examination, and Documenting and Reporting, with a secure and forensically sound data extraction approach from both applications. Due to data limitations from LINE and Telegram, the classification analysis is conducted using an Instagram comment dataset that reflects the cyberbullying context. Evaluation results show that the Complement Naive Bayes model outperforms Random Forest, achieving an accuracy of 86% with balanced F1-scores, while Random Forest achieves 75% accuracy. These findings support the use of PCM as an effective aid for automatically identifying high-risk content on social media. The integration of digital forensics and artificial intelligence has significant potential to enhance the effectiveness of cyberbullying investigations.

Keywords: Cyberbullying,  Predictive Classification Model,  Complement Naive Bayes,  Random Forest,  LINE,  Telegram,  Digital Forensics, National Institute of Justice

Downloads

Download data is not yet available.

References

A. Raza and M. Bilal Hassan, “Digital Forensic Analysis of Telegram Messenger App in Android Virtual Environment,” Mobile and Forensics, vol. 4, no. 1, pp. 31–43, Mar. 2022, doi: 10.12928/mf.v4i1.5537.

Dr. Vivekananth.P, “The Role of Social Media Forensics in Digital Forensics,” International Journal of Engineering and Management Research, vol. 12, no. 4, pp. 1–3, Aug. 2022, doi: 10.31033/ijemr.12.4.1.

W. C. Lee, H. Y. Chen, and T. N. Lin, “A Predictive Classification Model for Identifying Conversation-related Mobile Forensic Data in Instant Messaging Applications,” ISDFS 2023 - 11th International Symposium on Digital Forensics and Security, pp. 0–5, 2023, doi: 10.1109/ISDFS58141.2023.10131853.

O. Abudu, O. Scholastica Onyenaucheya, S. Erinfolami, A. Adams, and O. Esther Abudu, “Digital Forensics in Cybersecurity,” 2024. [Online]. Available: https://www.researchgate.net/publication/387467023

C.-E. Bogos, R. Mocanu, and E. Simion, “A security analysis comparison between Signal, WhatsApp and Telegram,” Cryptology ePrint Archive, no. January, pp. 1–15, 2023.

M. Riskiyadi, “Investigasi Forensik Terhadap Bukti Digital Dalam Mengungkap Cybercrime,” Cyber Security dan Forensik Digital, vol. 3, no. 2, pp. 12–21, 2020, doi: 10.14421/csecurity.2020.3.2.2144.

M. E. Apriyani, R. A. Maskuri, M. H. Ratsanjani, A. Pramudhita, and R. Rawansyah, “Forensic Digital Analysis of Telegram Applications Using the National Institute Of Justice and Naïve Bayes Methods,” Mobile and Forensics, vol. 5, no. 2, pp. 21–30, 2023, doi: 10.12928/mf.v5i2.7893.

N. Institute of Justice, “Forensic Examination of Digital Evidence: A Guide for Law Enforcement.” [Online]. Available: http://www.ojp.usdoj.gov/nij

T. Arora, M. Sharma, and S. Khatri, Detection of Cyber Crime on Social Media using Random Forest Algorithm. IEEE, 2019.

Y. Daeng, J. Levin, M. Razzaq Prayudha, N. Putri Ramadhani, S. Imanuel, and A. Penerapan Sistem Keamanan Siber Terhadap Kejahatan Siber Di Indonesia Yusuf Daeng, “Analisis Penerapan Sistem Keamanan Siber Terhadap Kejahatan Siber Di Indonesia,” Journal Of Social Science Research, vol. 3, no. 6, pp. 1135–1145, 2023.

E. Aboujaoude, M. W. Savage, V. Starcevic, and W. O. Salame, “Cyberbullying: Review of an old problem gone viral,” Jul. 01, 2015, Elsevier USA. doi: 10.1016/j.jadohealth.2015.04.011.

T. Ruslan, I. Riadi, and S. Sunardi, “Analisis Forensik Digital Pada Whatsapp Dan Facebook Menggunakan Metode NIST,” Jurnal Fasilkom, vol. 13, no. 02, pp. 286–292, 2023, doi: 10.37859/jf.v13i02.5540.

C. Negi, “"An overview of worldwide cyberbullying and cyberviolence against Women.” [Online]. Available: https://ssrn.com/abstract=4529613

M. R. D. Qibriya, A. Ambarwati, and K. E. Susilo, “Analisis Forensik Digital Pada Aplikasi Instant Messaging Di Smartphone Berbasis Android Untuk Bukti Digital,” Jurnal Teknologi Informasi, vol. 5, no. 2, pp. 114–121, 2021, doi: 10.36294/jurti.v5i2.2200.

M. A. Wani, N. Agarwal, and P. Bours, “Sexual-predator Detection System based on Social Behavior Biometric (SSB) Features,” Procedia CIRP, vol. 189, pp. 116–127, 2021, doi: 10.1016/j.procs.2021.05.075.

M. A. Aziz, I. Riadi, and R. Umar, “Analisis Forensik Line Messenger Berbasis Web Menggunakan Framework National Institute of Justice (Nij),” Seminar Nasional Informatika, vol. 2018, no. November, pp. 51–57, 2018.

Downloads

Published

2025-08-06

How to Cite

Yusdiana, K., Rizky Rahman J.P, & Eddy Prasetyo Nugroho. (2025). Predictive Classification Model dalam Tahapan Framework NIJ untuk Otomatisasi Investigasi Digital Forensik (Studi Kasus: Cyberbullying). Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(2), 836–844. https://doi.org/10.62712/juktisi.v4i2.521