Analisis Sentimen Masyarakat terhadap Isu Korupsi Dana Bencana di Indonesia Menggunakan Metode Bidirectional Long Short-Term Memory (Bi-LSTM)

Authors

  • Toni Prabowo Universitas Pembangunan Panca Budi
  • Muhammad Irfan Sarif Universitas pembangunan Panca Budi Medan
  • Aradi Sebayang Universitas pembangunan Panca Budi Medan
  • Tengku Didi Ferdillah Universitas pembangunan Panca Budi Medan
  • Muhammad Azuan Universitas pembangunan Panca Budi Medan

DOI:

https://doi.org/10.62712/juktisi.v4i3.756

Keywords:

Sentiment Analysis, Bi-LSTM, Disaster Fund Corruption, Deep Learning

Abstract

Corruption of disaster relief funds and social assistance is a critical issue that undermines social justice and public trust in government integrity in Indonesia. This phenomenon has triggered a massive wave of opinions on social media, necessitating deep computational analysis to objectively understand public perception dynamics. This study aims to implement and evaluate the performance of a Deep Learning algorithm, specifically Bidirectional Long Short-Term Memory (Bi-LSTM), in classifying public sentiment related to the issue of disaster fund corruption. The dataset comprises 1,358 textual data points categorized into negative, neutral, and positive sentiments, with a significant dominance of the negative class (926 entries). The proposed model architecture integrates a 300-dimensional embedding layer, a Bi-LSTM layer to capture bidirectional context, and a combination of Global Max Pooling and Global Average Pooling for optimal feature extraction. The experimental results demonstrate that the model achieved an accuracy of 0.75, with a Weighted F1-score of 0.76 and a Macro F1-score of 0.65. Confusion Matrix analysis reveals that the model is highly effective in identifying negative sentiments but faces challenges in distinguishing minority classes due to data imbalance and linguistic ambiguities such as sarcasm. These findings provide deep insights for policymakers regarding public sentiment and demonstrate both the potential and limitations of the Bi-LSTM method in processing informal and sarcastic Indonesian text within the context of political and corruption discourse.

Keywords: Sentiment Analysis, Bi-LSTM, Disaster Fund Corruption, Deep Learning, Natural Language Processing

Downloads

Download data is not yet available.

References

B. A. Maulana, R. A. Fauzi, R. I. Agustin, S. A. Azhaar, and T. Rohana, “KOMPARASI ALGORITMA NAÏVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN TWITTER KORUPSI BANSOS BERAS MASA PANDEMI,” vol. 12, no. 2, pp. 912–918, 2024.

R. H. Yahya, W. Maharani, and R. Wijaya, “Disaster Management Sentiment Analysis Using the BiLSTM Method,” vol. 7, pp. 501–508, 2023, doi: 10.30865/mib.v7i1.5573.

P. Zahwa, S. Agustian, Novriyanto, and F. Yanto, “IMPLEMENTASI BI-DIRECTIONAL LONG SHORT TERM MEMORY TERHADAP KLASIFIKASI SENTIMEN DI TWITTER PADA DATASET TERBATAS,” vol. 7, no. 1, pp. 11–24, 2023.

D. Ariyus, D. Manongga, and I. Sembiring, “Enhancing Sentiment Analysis of Indonesian Tourism Video Content Commentary on TikTok: A FastText and Bi-LSTM Approach,” vol. 14, no. 6, pp. 18020–18028, 2024.

A. R. Kamila, V. Budiyanto, and Surianto, “Exploring the Effectiveness of Bi-LSTM in Detecting Indonesian-Language Hoax News,” pp. 4501–4509, 2025.

G. S. Prahasto and E. B. Setiawan, “Twitter Social Media-Based Sentiment Analysis Using Bi-LSTM Method With Genetic Algorithms Optimization,” vol. 11, no. 1, 2025.

K. G. R, Kamalishree, K. Rajendran, and P. S. R, “Sentiment Analysis on Movie Reviews,” vol. 7, no. 7, pp. 5–10, 2022.

C. H. Lin and U. Nuha, “Sentiment analysis of Indonesian datasets based on a hybrid deep ‑ learning strategy,” J. Big Data, 2023, doi: 10.1186/s40537-023-00782-9.

A. Chowanda and Y. Muliono, Indonesian Sentiment Analysis Model from Social Media by Stacking BERT and BI-LSTM. 2022. doi: 10.1109/AiDAS56890.2022.9918717.

Z. Hameed and B. G. Zapirain, “Sentiment classification using a single-layered BiLSTM model,” vol. 8, 2020, doi: 10.1109/ACCESS.2020.2988550.

W. J. Kusoema and I. Ibrahim, “Analisis Sentimen dalam Kasus Korupsi PT. Pertamina menggunakan Metode indoBERT dan RCNN Sentiment Analysis on the PT Pertamina Corruption Case using IndoBERT and RCNN Methods,” vol. 14, pp. 2246–2257, 2025, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

J. C. Setiawan, K. M. Lhaksmana, and Bunyamin, “SENTIMENT ANALYSIS OF INDONESIAN TIKTOK REVIEW USING LSTM AND INDOBERTWEET ALGORITHM,” vol. 8, no. 3, pp. 774–780, 2023.

A. R. Dwijaya and A. D. Laksito, “Sentiment Analysis of Pedulilindungi Application Reviews Using Machine Learning and Deep Learning,” vol. 5, no. 2, 2023.

Kadarsi and D. Pujianto, “APPLICATION OF TRANSFORMER MODEL AND WORD EMBEDDING IN SENTIMENT ANALISYS OF INDONESIAN E- COMMERCE APPLICATION REVIEW,” vol. 7, no. 3, pp. 720–732, 2025.

A. R. Gunawan and R. F. A. Aziza, “Sentiment Analysis Using LSTM Algorithm Regarding Grab Application Services in Indonesia,” vol. 9, no. 2, pp. 322–332, 2025.

S. A. R. Hsb and M. Furqon, “Analisis Sentimen Terkait Kasus Korupsi Timah Pada Aplikasi X Menggunakan Algoritma Support Vector Machine Sentiment,” J. Comput. Eng. Syst. Sci., vol. 10, no. 1, pp. 299–311, 2025.

Published

2026-01-03

How to Cite

Prabowo, T., Muhammad Irfan Sarif, Sebayang, A., Ferdillah, T. D., & Muhammad Azuan. (2026). Analisis Sentimen Masyarakat terhadap Isu Korupsi Dana Bencana di Indonesia Menggunakan Metode Bidirectional Long Short-Term Memory (Bi-LSTM). Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(3), 1787–1795. https://doi.org/10.62712/juktisi.v4i3.756