Peringkasan Otomatis Risalah Rapat DPR RI Menggunakan IndoNanoT5 dan LongT5 TGlobal

Authors

  • Alghaniyu Naufal Hamid Universitas Pendidikan Indonesia
  • Yudi Wibisono Universitas Pendidikan Indonesia
  • Rasim Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.62712/juktisi.v4i3.772

Keywords:

abstractive summarization, meeting minutes DPR RI, LongT5 TGlobal, IndoNanoT5, ROUGE

Abstract

Meeting minutes of the Indonesian House of Representatives DPR RI are lengthy, dialogic, and distribute important information across many sections, making it difficult for readers to quickly identify core discussions, decisions, and follow up actions. This study develops and evaluates an abstractive summarization system for 200 DPR RI meeting minutes using a meeting domain based staged training strategy. Domain adaptation is performed through intermediate pre training on the AMI Meeting Corpus translated into Indonesian, followed by fine tuning on the DPR RI minutes dataset. Two approaches are compared. The first approach employs LongT5 with Transient Global Attention TGlobal as an end to end long context model. The second approach uses IndoNanoT5 with chunking and sliding window, a chunk size of 1024 tokens, 127 token overlap, and aggregation of 256 token chunk summaries into a final summary of up to 1024 tokens. Evaluation is conducted using ROUGE 1, ROUGE 2, ROUGE L, and Word F1 metrics. Validation results show that LongT5 TGlobal achieves the best performance after fine tuning, with ROUGE 1 of 0.3031, ROUGE 2 of 0.0924, ROUGE L of 0.1427, and Word F1 of 0.2721. IndoNanoT5 improves after fine tuning, achieving ROUGE 1 of 0.1437, ROUGE 2 of 0.0483, ROUGE L of 0.1098, and Word F1 of 0.1264, but remains affected by context fragmentation and repetition caused by overlap and summary aggregation. This approach supports improved accessibility of legislative meeting information for the public, researchers, journalists, and policymakers in sustainable democratic governance contexts.

Downloads

Download data is not yet available.

References

Te. Ardhoyo, “Rapat Yang Baik Berarti Keuntungan Lebih Besar,” Feb 2013, Diakses: 19 September 2024. [Daring]. Tersedia Pada: Http://Journal.Moestopo.Ac.Id/Index.Php/Wacana/Article/Viewfile/91/44

Dpr Ri, “Pengambilan Keputusan.” Diakses: 22 September 2024. [Daring]. Tersedia Pada: Https://Www.Dpr.Go.Id/Tentang/Pengambilan-Keputusan

A. Behori Dan B. Alamin, “E-Notulen Rapat Di Pondok Pesantren Salafiyah Syafi’iyah Sukorejo Situbondo,” Jurnal Ilmiah Informatika, Vol. 3, No. 1, Hlm. 199–205, Jun 2018, Doi: 10.35316/Jimi.V3i1.475.

E. Retnowati, “Keterbukaan Informasi Publik Dan Good Governance (Antara Das Sein Dan Das Sollen),” Perspektif, Vol. 17, No. 1, Hlm. 54, Jan 2012, Doi: 10.30742/Perspektif.V17i1.94.

J. Matthes, K. Karsay, D. Schmuck, Dan A. Stevic, “‘Too Much To Handle’: Impact Of Mobile Social Networking Sites On Information Overload, Depressive Symptoms, And Well-Being,” Comput Human Behav, Vol. 105, Hlm. 106217, Apr 2020, Doi: 10.1016/J.Chb.2019.106217.

A. Vaswani Dkk., “Attention Is All You Need,” 2017.

W. S. El-Kassas, C. R. Salama, A. A. Rafea, Dan H. K. Mohamed, “Automatic Text Summarization: A Comprehensive Survey,” 1 Maret 2021, Elsevier Ltd. Doi: 10.1016/J.Eswa.2020.113679.

A. P. Widyassari Dkk., “Review Of Automatic Text Summarization Techniques &Amp; Methods,” Journal Of King Saud University - Computer And Information Sciences, Vol. 34, No. 4, Hlm. 1029–1046, Apr 2022, Doi: 10.1016/J.Jksuci.2020.05.006.

L. Golia Dan J. Kalita, “Action-Item-Driven Summarization Of Long Meeting Transcripts,” Dalam Proceedings Of The 2023 7th International Conference On Natural Language Processing And Information Retrieval, New York, Ny, Usa: Acm, Des 2023, Hlm. 91–98. Doi: 10.1145/3639233.3639253.

K. Klesnilová Dan M. Elizabeth, “Team Synapse @ Automin 2023: Leveraging Bart-Based Models For Automatic Meeting Minuting,” 2023. [Daring]. Tersedia Pada: Https://Huggingface.Co/Facebook/

M. Guo Dkk., “Longt5: Efficient Text-To-Text Transformer For Long Sequences,” Mei 2022, [Daring]. Tersedia Pada: Http://Arxiv.Org/Abs/2112.07916

Lazarusnlp, “Indonanot5.” Diakses: 23 April 2025. [Daring]. Tersedia Pada: Https://Huggingface.Co/Lazarusnlp/Indonanot5-Base

S. A. Rohmah, “Peringkasan Otomatis Risalah Rapat Dengan Metode Transformer Dan Long Short-Term Memory,” Universitas Pendidikan Indonesia, 2024.

A. Bahari Dan K. E. Dewi, “Peringkasan Teks Otomatis Abstraktif Menggunakan Transformer Pada Teks Bahasa Indonesia,” Komputa : Jurnal Ilmiah Komputer Dan Informatika, Vol. 13, No. 1, Hlm. 83–91, Apr 2024, Doi: 10.34010/Komputa.V13i1.11197.

C.-Y. Lin, “Rouge: A Package For Automatic Evaluation Of Summaries,” 2004.

J. Carletta Dkk., “The Ami Meeting Corpus: A Pre-Announcement,” 2006.

C. Raffel Dkk., “Exploring The Limits Of Transfer Learning With A Unified Text-To-Text Transformer,” 2020. [Daring]. Tersedia Pada: Http://Jmlr.Org/Papers/V21/20-074.Html.

Published

2026-01-08

How to Cite

Hamid, A. N., Wibisono, Y., & Rasim. (2026). Peringkasan Otomatis Risalah Rapat DPR RI Menggunakan IndoNanoT5 dan LongT5 TGlobal. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(3), 1830–1839. https://doi.org/10.62712/juktisi.v4i3.772