Optimasi Strategi Promosi Sekolah SMK melalui Segmentasi Data Siswa Baru dengan Clustering Metode K-Means menggunakan Differential Evolution (DE)
DOI:
https://doi.org/10.62712/juktisi.v4i3.779Keywords:
strategi promosi, segmentasi siswa baru, clustering K-Means, Differential Evolution, smkAbstract
SMK XYZ faces challenges in developing effective and efficient promotional strategies to attract prospective new students. Previously, promotional approaches have been general and failed to address the specific needs of different prospective student segments. This research aims to optimize school promotional strategies by analyzing patterns in new student characteristics through data segmentation techniques. The proposed method is K-Means Clustering optimized with the Differential Evolution (DE) algorithm. DE optimization addresses K-Means' sensitivity to initial cluster center initialization, aiming for more stable and optimal segmentation. The data used includes demographic attributes, major interests, registration pathways, and prior school origins of new students from the 2023/2024 cohort. Research results show that the DE-K-Means combination produces more compact clusters (lower within-cluster sum of squares values) compared to standard K-Means. Based on the resulting cluster analysis, three distinct promotional strategies are formulated for each prospective student segment: digital-intensive approaches, partnerships with feeder schools, and highlighting specific major advantages. Implementing these strategies is expected to significantly increase the quality and quantity of new student admissions.
Downloads
References
A. B. Santoso, H. W. Kesuma, and R. N. B. Tobing, “Teori dan realitas antara Pendidikan SMK dan sekolah vokasi bagi peningkatan daya saing generasi muda dalam mendapatkan kesempatan kerja,” Off. Nobile J., vol. 1, no. 2, pp. 1–11, 2024.
D. A. Triani, M. Aldi, N. H. P. Fauzi, and R. N. Safitri, “Curriculum innovation at SMK PGRI 2 Cimahi: Preparing students for the workforce,” Hipkin J. Educ. Res., vol. 2, no. 1, pp. 23–36, 2025.
F. S. A. Safitri and E. Sutadji, “Strategi Pengembangan Kompetensi Lulusan Pendidikan Kejuruan Guna Meningkatkan Daya Saing Global,” Didakt. J. Kependidikan, vol. 14, no. 1 Februari, pp. 1507–1522, 2025.
M. S. Rizkylillah, J. A. Angwen, N. Abdurrahman, R. Prihantoro, and R. Febriana, “Persepsi guru terhadap implementasi Kurikulum Merdeka di SMK: Kajian kualitatif menuju Indonesia Emas 2045,” J. Stud. Edukasi Integr., vol. 1, no. 3, pp. 122–132, 2024.
F. Farozi, G. Abdullah, and S. Soedjono, “Manajemen Promosi Penerimaan Peserta Didik Baru Di Smk Negeri 1 Kandeman Batang,” J. Manaj. Pendidik., vol. 12, no. 3, 2023.
M. Milke and Z. Vanel, “Strategi IMC Sekolah Alam Tondo Lino Untuk Membangun Brand Awareness,” J. Communio J. Jur. Ilmu Komun., vol. 13, no. 1, pp. 44–65, 2024.
D. F. Damayanti, I. D. Cahyani, A. L. Nurrachma, and M. Ikaningtyas, “ANALISIS STRATEGI PENJUALAN DAN SEGMENTASI PASAR PADA PRODUK ANEKA JAJANAN TRADISIONAL,” J. Media Akad., vol. 2, no. 4, 2024.
S. I. Ali and S. Pardalepi, “Analisis Strategi Pasar: Pendekatan dalam Menentukan Segmen dan Target Konsumen,” Multidiscip. J. Relig. Soc. Sci., vol. 2, no. 1, pp. 47–57, 2025.
A. Nugroho and M. Fadhilah, “Customer-Centric Strategy Dalam Menghadapi Persaingan Perusahaan Jasa Konstruksi,” J. Teknol. Dan Manaj. Ind. Terap., vol. 2, no. 4, pp. 316–325, 2023.
H. D. Wijaya, “Strategi Customer-Centric Dalam Marketing: Dampaknya Pada Loyalitas Dan Retensi Pelanggan,” J. Manaj. Dan Bisnis Ekon., vol. 1, no. 1, pp. 267–279, 2023.
I. A. Rosyada and D. T. Utari, “Penerapan Principal Component Analysis untuk Reduksi Variabel pada Algoritma K-Means Clustering,” Jambura J. Probab. Stat., vol. 5, no. 1, pp. 6–13, 2024.
H. Mukhtar, I. D. Pramaditya, W. S. Weisdiyanto, S. Hardian_Putra, D. Trimuawasih, and A. A. Rilda, “ALGORITMA K-MEANS UNTUK PENGELOMPOKAN PERILAKU CUSTOMER,” J. Softw. Eng. Inf. Syst., pp. 96–101, 2024.
F. Y. Arini, J. N. Bagaskara, A. S. Anwar, M. N. Faqih, P. A. Brata, and Y. P. S. Aji, “Optimasi Seleksi Fitur Menggunakan Algoritma Hybrid ARO-DBSCAN untuk Meningkatkan Akurasi Model Klasifikasi K-Nearest Neighbor: Feature Selection Optimization Using the Hybrid ARO-DBSCAN Algorithm to Improve the Accuracy of the K-Nearest Neighbor Classification Model,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 6, no. 1, pp. 1–10, 2026.
A. Herawati, A. Amalia, D. K. Setiadi, G. Wicaksono, and H. A. Majid, “Algoritma Evolusi untuk Masalah Optimasi,” J. Komputasi Cerdas, vol. 1, no. 1, pp. 1–10, 2025.
R. P. Santoso, L. S. R. Ningsih, and W. Irawati, “Implementation Of Segmenting Targeting And Positioning Strategies In Improving Marketing Performance,” BIMA J. Bus. Innov. Manag., vol. 6, no. 2, pp. 280–292, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 PEBRUARIANTO HUTABARAT, Adil Setiawan, Bill Raj, M Prasetyo, M. Agung Irnanda, Empiter Gea, Johan, Andreas Parapat

This work is licensed under a Creative Commons Attribution 4.0 International License.
Pebruarianto Hutabarat















