A Pengembangan Chatbot Informasi Kesehatan Ibu dan Anak Jawa Barat Berbasis Hybrid RAG dan TextToSQL

Authors

  • Muhammad Alam Basallamah Universitas Pendidikan Indonesia
  • Lala Septem Riza Universitas Pendidikan Indonesia
  • Ani Anisyah Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.62712/juktisi.v4i3.783

Keywords:

Chatbot, Maternal and Child Health, Hybrid, RAG, TextToSQL, Large Language Model

Abstract

The high Maternal Mortality Rate and stunting prevalence in West Java hinder the achievement of SDGs. Information accessibility remains a key constraint as data is scattered in narrative formats within Health Profiles and MCH Books. This study develops a hybrid chatbot based on Retrieval-Augmented Generation (RAG) and Text-to-SQL using the Google Gemini Large Language Model. The system integrates hierarchical chunking, intelligent routing, conversational memory, and automatic data visualization to present factual and statistical information precisely. System evaluation demonstrates high performance: Text-to-SQL reached 93.33% execution accuracy and 85% Router accuracy. In the RAG module, testing on 60 questions yielded scores of 0.990 Faithfulness, 0.883 Context Recall, and 0.950 Answer Relevancy. The system achieved a perfect score of 1.000 for out-of-context handling, proving safety from hallucinations. User Acceptance Testing (UAT) recorded a 80% success rate, where the chart feature was rated significant in aiding data understanding. The study concludes that the hybrid approach effectively enhances health insight accessibility for the public and stakeholders, although complex table extraction requires further optimization.

Downloads

Download data is not yet available.

References

H. Kurniasih, K. D. Purnanti, and R. Atmajaya, “Pengembangan Sistem Informasi Penyakit Tidak Menular (Ptm) Berbasis Teknologi Informasi,” J. Teknoinfo, vol. 16, no. 1, p. 60, 2022, doi: 10.33365/jti.v16i1.1520.

R. K. Diyan Zahra, Ambia Nurdin, Ully Fitria, Kiki Asrifa Dinen, “Pemanfaatan Teknologi dalam Bidang Kesehatan,” Promot. J. Kesehat. Masy., vol. 8, no. 1, p. 97, 2018.

Siti Noor Chotimah, “Implementasi Sistem Informasi Kesehatan di Fasilitas Pelayanan Kesehatan Indonesia : LiteratureReview,” J. Rekam Medis dan Manaj. Inf. Kesehat., vol. 2, no. 1, pp. 8–13, 2021.

N. F. Purba, F. S. Annisa, A. Syafitri, and S. H. Purba, “Jurnal Kesehatan Unggul Gemilang,” J. Kesehat. Unggul Gemilang, vol. 8, no. 1, pp. 7–15, 2024.

M. E. dr. Siti Nadia Tarmizi, “Pemanfaatan Teknologi sebagai Penopang Transformasi Sistem Informasi Kesehatan,” Kemenkes. [Online]. Available: https://kemkes.go.id/id/pemanfaatan-teknologi-sebagai-penopang-transformasi-sistem-informasi-kesehatan

Hilda B Alexander, “Angka Kematian Ibu Masih Tinggi, Upaya Komprehensif Diperlukan,” Kompas.com. [Online]. Available: https://lestari.kompas.com/read/2023/12/28/110000286/angka-kematian-ibu-masih-tinggi-upaya-komprehensif-diperlukan

A. Nugraha, “Pemerintah Jawa Barat Klaim Jumlah Kematian Bayi Menurun Drastis,” Liputan6. [Online]. Available: https://www.liputan6.com/health/read/5198260/pemerintah-jawa-barat-klaim-jumlah-kematian-bayi-menurun-drastis

B. R. Anassai and P. Josaphat, “Pembangunan Chatbot Sistem Informasi KBLI dan KBJI Berbasis LLM (Development of LLM-Based KBLI and KBJI Information System Chatbot),” Semin. Nas. Off. Stat. 2024, pp. 723–734, 2024.

P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,” Adv. Neural Inf. Process. Syst., vol. 2020-December, 2020.

M. M. Abootorabi et al., “Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation,” pp. 16776–16809, 2025, doi: 10.18653/v1/2025.findings-acl.861.

Nur Rohim and E. Zuliarso, “Penerapan Algoritma Deep Learning Untuk Pengembangan Chatbot Yang Digunakan Untuk Konsultasi Dan Pengenalan Tentang Virus Covid-19,” Pixel J. Ilm. Komput. Graf., vol. 15, no. 2, pp. 267–278, 2022, doi: 10.51903/pixel.v15i2.777.

N. A. Purwitasari and M. Soleh, “Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Parocessing,” J. IPTEK, vol. 6, no. 1, pp. 14–21, 2022, doi: 10.31543/jii.v6i1.192.

B. A. Haryono and A. Prasetya, “Identifikasi Kuantitas Berbasis Rule Pada Masalah Text-to-SQL,” vol. 5, no. 1, pp. 26–39, 2025.

S. Gufranaka, A. Turmudi Zy, and Ermanto, “Implementasi Retrieval Augmented Generation (RAG) Dalam Perancangan Chatbot Kesehatan Pencernaan,” JSAI (Journal Sci. Appl. Informatics), vol. 8, no. 1, pp. 181–188, 2025, doi: 10.36085/jsai.v8i1.7678.

A. Kachhwal, A. S. Gupta, A. Jangid, and A. Sharma, “A Multi-Modal Hybrid Search System using RAG and Text2SQL for Semantic Information Retrieval,” 2025.

Published

2026-01-10

How to Cite

Basallamah, M. A., Riza, L. S., & Anisyah, A. (2026). A Pengembangan Chatbot Informasi Kesehatan Ibu dan Anak Jawa Barat Berbasis Hybrid RAG dan TextToSQL. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(3), 1895–1902. https://doi.org/10.62712/juktisi.v4i3.783