Analysis of Color Feature-Based Segmentation and Classification of Fruits Images Using Linear Discriminant Analysis Method

Authors

  • Andri Armaginda Siregar Universitas Potensi Utama
  • Susiana Khosasih Universitas Potensi Utama
  • Mhd. Agung Irnanda Universitas Potensi Utama
  • Jalaluddin Nasution Universitas Potensi Utama
  • Rahmat Humala Putra Hasibuan Universitas Potensi Utama
  • Wahyu Saptha Negoro Universitas Potensi Utama

DOI:

https://doi.org/10.62712/juktisi.v4i3.776

Keywords:

Digital Image Processing, Color-Based Segmentation, Fruit Classification, Linear Discriminant Analysis, Color Features, Bananas, Strawberries

Abstract

This study discusses the analysis of fruit image segmentation and classification based on color features, with bananas and strawberries as the research objects. This study addresses the problem of separating fruit objects from the background and automatically classifying fruit types using simple, efficient, and interpretable color features. The objectives of this study are to analyze the effectiveness of color-based segmentation and evaluate the performance of the Linear Discriminant Analysis (LDA) method in classifying fruit images and analyzing separability between classes. The proposed method includes image pre-processing, segmentation based on a combination of Lab* and HSV color spaces, color feature extraction in the form of average Hue and Saturation values, and classification using Linear Discriminant Analysis. The dataset used consists of images of bananas and strawberries, which are divided into training data and test data. The results show that color-based segmentation effectively separates fruit objects from the background and produces a clear feature distribution between classes. The classification process using LDA produces an accuracy rate of 100% on the test data, indicating that the color features used have high discriminatory power. Based on these results, it can be concluded that the combination of color-based segmentation and the LDA method is effective for fruit image classification and is capable of providing good class separability analysis with low computational complexity.

Downloads

Download data is not yet available.

References

A. Tri Laksono, P. Citra Digital Buah, P. Wanarti Rusmamto, and M. Syariffuddien Zuhrie, “Pengolahan Citra Digital Buah Murbei Dengan Algoritma LDA (Linear Discriminant Analysis),” Indones. J. Eng. Technol., vol. 4, no. 2, pp. 71–78, 2022, doi: https://doi.org/10.26740/inajet.v4n2.p71-78.

N. Astrianda, H. Maghfirah, and F. S. Mohamad, “Klasifikasi Kematangan Tomat Dengan Model Warna Yang Berbeda Menggunakan Linear Diskriminan Analisis (Lda),” VOCATECH Vocat. Educ. Technol. J., vol. 3, no. 2, pp. 46–53, 2022, doi: 10.38038/vocatech.v3i2.75.

K. K. Saha et al., “Classification of starfruit maturity using smartphone-image and multivariate analysis,” J. Agric. Food Res., vol. 11, no. December 2022, p. 100473, 2023, doi: 10.1016/j.jafr.2022.100473.

Wulandari, Sasmita, M. R. Mulia, A. B. Kaswar, D. D. Andayani, and A. S. Agung, “Klasifikasi Kandungan Nutrisi Buah Pisang Berdasarkan Fitur Tekstur dan Warna LAB menggunakan Jaringan Syaraf Tiruan Berbasis Pengloahan Citra Digital,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 3, pp. 507–518, 2024, doi: 10.25126/jtiik.938332.

H. H. Agung Ramadhanu, Fajri Rinaldi Chan, Nabilla Yasmin, Wahyu Saptha Negoro, Mardison, “Segmentation and Classification of Vitamin C Content in Red Chili Pepper Images Using the Linear Discriminant Analysis (LDA) Method.pdf,” Comput. Sci. Res. Its Dev. J., vol. 17, pp. 149–162, 2025, doi: https://doi.org/10.22303/csrid-.17.2.2025.149-162.

D. I. M. Fransiscus Rolanda Malau, “Classification of Edelweiss Flowers Using Data Augmentation and Linear Discriminant Analysis Methods,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 139–148, 2022, doi: https://doi.org/10.37385/jaets.v4i1.960.

R. A. M. Mutmainnah Muchtar, “Integrasi Fitur Warna, Tekstur Dan Renyi Fraktal Untuk Klasifikasi Penyakit Daun Kentang Menggunakan Linear Discriminant Analysis,” J. Mnemon., vol. 1, pp. 77–84, 2024, doi: https://doi.org/10.36040/mnemonic.v7i1.9258.

S. B. Nemade and S. P. Sonavane, “Co-occurrence patterns based fruit quality detection for hierarchical fruit image annotation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 4592–4606, 2022, doi: 10.1016/j.jksuci.2020.11.033.

G. C. Wakchaure et al., “Maturity stages detection prototype device for classifying custard apple (Annona squamosa L) fruit using image processing approach,” Smart Agric. Technol., vol. 7, no. November 2023, p. 100394, 2024, doi: 10.1016/j.atech.2023.100394.

A. Nurdiansyah, H. Erlanda, Y. Betriana Roza, and R. Sovia, “Klasifikasi Citra Dalam Identifikasi Kol Dan Wortel Menggunakan Algoritma Lda Dan Knn,” J. Sci. Soc. Res., vol. VIII, no. 2, pp. 1895–1902, 2025, doi: https://doi.org/10.54314/jssr.v8i2.2894.

S. Gaikwad and S. Tidke, “Multi-Spectral Imaging for Fruits and Vegetables,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, pp. 743–760, 2022, doi: 10.14569/IJACSA.2022.0130287.

W. Wang, A. Zhu, H. Wei, and L. Yu, “A novel method for vegetable and fruit classification based on using diffusion maps and machine learning,” Curr. Res. Food Sci., vol. 8, no. January, p. 100737, 2024, doi: 10.1016/j.crfs.2024.100737.

K. Mohi-Alden, M. Omid, M. Soltani Firouz, and A. Nasiri, “A machine vision-intelligent modelling based technique for in-line bell pepper sorting,” Inf. Process. Agric., vol. 10, no. 4, pp. 491–503, 2023, doi: 10.1016/j.inpa.2022.05.003.

Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022, doi: 10.32736/sisfokom.v11i3.1502.

F. L. Ahmad Badri Maulana Widat., Achmad Baijuri, “Classification of Tomato Fruit Image Ripeness Based on Color Feature Extraction Using the K-NN Method,” J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, doi: https://doi.org/10.33379/gtech.v8i3.4539.

M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, and A. Albarelli, “Fruit ripeness classification: A survey,” Artif. Intell. Agric., vol. 7, pp. 44–57, 2023, doi: 10.1016/j.aiia.2023.02.004.

A. I. J. Muhammad Ahsan, Tabita Yuni Susanto, Tiza Ayu Virania, “Credit Card Fraud Detection Using Linear Dicriminant Analysis (LDA), Random Forest, And Binary Logistic Regression,” J. Ilmu Mat. Dan Terap., vol. 16, no. 4, pp. 1337–1346, 2022, doi: https://doi.org/10.30598/barekengvol16iss4pp1337-1346.

M. Al-Dairi, P. B. Pathare, R. Al-Yahyai, N. Al-Habsi, H. Jayasuriya, and Z. Al-Attabi, “Machine vision system combined with multiple regression for damage and quality detection of bananas during storage,” Appl. Food Res., vol. 4, no. 2, p. 100641, 2024, doi: 10.1016/j.afres.2024.100641.

L. A. Swarga, L. T. Swarga, R. Hartayu, K. Setyadjit, and C. C. Islamy, “Klasifikasi Jenis Daun Jeruk Menggunakan Pengolahan Citra, Linear Discriminant Analysis, dan Algoritma Support Vector Machine,” El Sains J. Elektro, vol. 7, no. 1, pp. 43–48, 2025, doi: 10.30996/elsains.v7i1.131860.

C. N. Mutasar Mutasar, “Combination Of Learning Vector Quantization And Linear Discriminant Analysis For Tea Leaf Disease Classification,” J. Ilmu Pengetah. Dan Teknol. Komput., vol. 10, no. 3, pp. 600–608, 2025, doi: https://doi.org/10.33480/jitk.v10i3.6013.

Downloads

Published

2026-01-10

How to Cite

Andri Armaginda Siregar, Susiana Khosasih, Mhd. Agung Irnanda, Jalaluddin Nasution, Rahmat Humala Putra Hasibuan, & Wahyu Saptha Negoro. (2026). Analysis of Color Feature-Based Segmentation and Classification of Fruits Images Using Linear Discriminant Analysis Method. Jurnal Komputer Teknologi Informasi Sistem Informasi (JUKTISI), 4(3), 1876–1885. https://doi.org/10.62712/juktisi.v4i3.776